(For USM Staff/Student Only)

EngLib USM > Ω School of Chemical Engineering >

Development of nanostructured gas sensing material as an ethylene gas detector / Maisara Azad Mat Akhir

Development of nanostructured gas sensing material as an ethylene gas detector_Maisara Azad Mat Akhir_M4_2016_MYMY
Gas etilena adalah bahan penting dalam pemasaran produk pertanian segar kerana ia boleh digunakan secara komersial untuk hormon tanaman tiruan, mengawal dan memantau proses pemasakan buah-buahan klimaterik. Menyedari kepentingan alat pengesan gas etilena untuk proses pemasakan buah-buahan, banyak kajian telah dijalankan untuk mengkaji pengaruh gas etilena dalam proses pemasakan tanaman. Nanopartikel tin oxida (SnO2) adalah bahan yang paling popular untuk mengesan gas etilena kerana ia adalah semikonduktor jenis n yang mempunyai jalur jurang yang luas, justeru itu, menyebabkan rintangan elektrik yang rendah dan pengkonduksian elektrik yang lebih baik untuk alat pengesan gas. Tambahan pula, suhu operasi yang rendah, kepekaan yang tinggi, reka bentuk sensor yang ringkas serta kos pembuatan yang rendah membuat SnO2 pilihan terbaik untuk aplikasi pengesan gas. Dalam penyelidikan ini, pemendapan wap kimia (CVD) dan kaedah hidroterma telah digunakan untuk mensintesis nano-struktur SnO2 (SnO2 NSs). Sintesis, pencirian bahan dan sifat-sifat pengesan gas etilena telah dikaji dengan menggunakan nano SnO2. Pertama sekali, nano-wayar (NWs) SnO2 telah disintesis di atas substrat silikon dengan menggunakan kaedah CVD. Kesan daripada pemanipulasian pembolehubah CVD (seperti suhu sintesis, tempoh sintesis, kadar aliran gas argon dan gas oksigen) terhadap dimensi SnO2 NWs telah disiasat dengan menggunakan analisa statistik iaitu Reka Bentuk Eksperimen (RBE) oleh perisian Design Expert 6.0.8. Mikroskop imbasan elektron (SEM), spektroskop serakan tenaga (EDS) dan spektroskop pembelauan sinar-X (XRD) telah mengesahkan fabrikasi SnO2 NWs. Berdasarkan graf permukaan 3-dimensi yang dihasilkan oleh DOE, diameter SnO2 NWs yang paling kecil (~ 46 nm) telah diperolehi pada suhu sintesis 850 °C dengan kadar aliran gas oksigen sebanyak 50 sccm dan aliran gas argon sebanyak 100 sccm dan masa pemendapan adalah 60 minit. Sebaliknya, diameter SnO2 nano-wayar yang terbesar (~ 160 nm) telah dihasilkan pada suhu 900 °C. Daripada analisis Pengusikan, didapati bahawa suhu sintesis memberi kesan ketara kepada diameter SnO2 nanowayar diikuti oleh tempoh sintesis dan kadar aliran gas argon / oksigen. Kemudian, SnO2 nano-rod, nano-kubus dan nano-spera telah dihasilkan dengan menggunakan kaedah hidroterma. Kesan daripada pemanipulasian pembolehubah (seperti kepekatan pelopor, suhu, tempoh tindak balas dan kepekatan palladium) terhadap struktur kristal, morfologi, saiz zarah dan jurang jalur telah dikaji. Dari graf “Perturbation”, suhu hidroterma memberi kesan paling besar terhadap saiz kristal nano-SnO2 diikuti dengan tempoh tindak balas, kepekatan pelopor dan kepekatan palladium. Akhir sekali, tahap pengesanan nano SnO2 yang telah dihasilkan daripada kedua-dua kaedah (CVD dan hidroterma) terhadap gas etilena telah diuji dengan menggunakan kepekatan gas etilena yang berbeza. Daripada hasil kajian, SnO2 nano-partikel dihasilkan oleh teknik hidroterma menunjukkan reaksi yang paling baik terhadap gas etilena dari segi tahap kepekaan, suhu operasi dan kebolehbalikan rintangan elektrik berbanding dengan SnO2 NWs oleh kaedah CVD terutama apabila nano-partikel didop dengan Pd. Sebaliknya, NWs yang mempunyai diameter terkecil yang dihasilkan melalui kaedah CVD mempunyai masa tindak balas kurang daripada 10 saat dan masa pemulihan rintangan elektrik kurang dari 1 minit iaitu lebih cepat dari sampel hidroterma, walaupun sensitivitinya lebih rendah dari sampel hidroterma. _______________________________________________________________________ Ethylene gas is an important substance in fresh argo-products marketing because it can be used commercially for artificial plant hormone and to monitor the ripening process of climacteric fruits. Realizing the importance of ethylene gas sensor for fruit ripening process, many studies have been carried out in order to investigate the influence of ethylene to the ripening process. Tin oxide (SnO2) nanoparticles are the most popular material for ethylene gas sensor due to its wide band gap n-type semiconductor properties, which leads to low electrical resistance and better electrical conductivity for gas sensing properties. Furthermore, low operating temperature, high sensitivity, mechanical simplicity of sensor design and low manufacturing cost have made SnO2 the preferred choice for gas sensor applications. In this work, chemical vapor deposition (CVD) and hydrothermal methods were utilized to synthesize SnO2 nanostructures (NSs). The synthesis, material characterizations and the gas sensing properties of SnO2 NSs against ethylene gas had been studied. Firstly, SnO2 nanowires (NWs) were grown on silicon substrates by using CVD method. The effects of different synthesis conditions (growth temperature, growth duration, flow rates of argon and oxygen) on SnO2 NWs dimensions were investigated by using statistical DOE. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction spectroscopy (XRD) characterizations confirmed the successful fabrication of SnO2 NWs. From the response surface plot with DOE, the smallest SnO2 NWs diameter (~46 nm) was obtained at a reaction temperature of 850 °C with the oxygen / argon flow rates 50 sccm / 100 sccm, respectively and deposition time of 60 minutes. On the other hand, the largest SnO2 NWs diameter (~160 nm) was produced at temperature of 900 °C. From perturbation analysis, it was found that temperature gave the most significant effect to the diameter of SnO2 NWs followed by growth duration and flow rates of argon / oxygen. Later, SnO2 nanorods, nanocubes and nanospheres were obtained by a hydrothermal method. The effects of synthesis parameters (precursor concentration, reaction temperature, reaction duration and palladium concentration) on crystal structure, morphology, particle size and band gap properties were studied. From the perturbation plot with DOE, crystal size of SnO2 NSs was mostly affected by hydrothermal temperature followed by treatment duration, SnCl4.5H2O molar concentration and Pd concentration. For ethylene gas sensing characterization, SnO2 NSs produced by CVD and hydrothermal methods were tested for gas sensing properties towards the low concentrations of ethylene gas. From the testing, it can be found that, SnO2 NSs produced by hydrothermal technique had shown the most excellent sensing performance in terms of sensitivity, optimum operating temperature and reversibility feature than SnO2 NWs produced by CVD route. On the other hand, CVD sample with the smallest NWs diameter has the quickest response and recovery times which are less than 10 seconds (s) and less than 1 minutes respectively to ethylene gas than the sensors produced by hydrothermal, although the sensitivity is lower than hydrothermal samples.
Contributor(s):
Maisara Azad Mat Akhir - Author
Primary Item Type:
Thesis
Identifiers:
Accession Number : 875008839
Language:
English
Subject Keywords:
hydrothermal; nanospheres; simplicity
Sponsor - Description:
Pusat Pengajian Kejuruteraan Mekanik -
First presented to the public:
4/1/2016
Original Publication Date:
8/7/2020
Previously Published By:
Universiti Sains Malaysia
Place Of Publication:
School of Chemical Engineering
Citation:
Extents:
Number of Pages - 256
License Grantor / Date Granted:
  / ( View License )
Date Deposited
2020-08-07 16:01:24.863
Submitter:
Mohamed Yunus Yusof

All Versions

Thumbnail Name Version Created Date
Development of nanostructured gas sensing material as an ethylene gas detector / Maisara Azad Mat Akhir1 2020-08-07 16:01:24.863