Kebanyakan serangga dan haiwan menghasilkan bunyi sebagai cara komunikasi dalam spesies mereka atau sebagai bunyi yang dikeluarkan semasa makan atau perjalanan. Pengiktirafan automatik isyarat bio-akustik menjadi penting dalam aspek penyelidikan biologi atau pemantauan alam sekitar. Dengan peningkatan teknologi, para saintis hari ini dapat mengklasifikasikan jenis dan spesies haiwan dengan suara mereka tanpa perlu melihat haiwan atau serangga dengan mata kasar. Oleh itu, pengenalan spesies berdasarkan bunyi mereka adalah topik penting untuk meningkatkan aspek penyelidikan ekologi. Projek ini bertujuan untuk membangunkan sistem pengenalan suara spesies katak, mengenali spesies katak yang berlainan dengan menganalisis panggilan mereka. Dalam peringkat pemerolehan data, pangkalan data dari Intelligent Biometric Research Group (IBG), Pusat Pengajian Kejuruteraan Electrik dan Electronik Universiti Sains Malaysia dan Pusat Pengajian Farmasi Universiti Sains Malaysia telah digunakan untuk menilai prestasi sistem. Fail-fail panggilan katak mentah diproses dengan menggunakan teknik Mel- Frequency Cepstrum Coefficient (MFCC) untuk mengekstrak ciri-ciri yang diperlukan dalam menguji dan melatih sistem. Dalam projek ini, pengelas yang digunakan adalah Sparse Representation Classifier (SRC) dan Kernel Sparse Representation Classifier (KSRC). Prestasi SRC and KSRC akan dibincangkan dan dibandingkan dalam projek ini. Selain itu, antara muka pengguna grafik (GUI) juga dibangunkan untuk memudahkan pengguna semasa berinteraksi dengan sistem. Pendek kata, KSRC (96.6667%) mempunyai prestasi yang lebih tinggi berbanding dengan SRC (95.6667%). Walau bagaimanapun, KSRC mengambil masa pengiraan yang lebih panjang berbanding dengan SRC. GUI yang melaksanakan KSRC telah diprogramkan dengan dimensi ciri 64-64 sebagai produk akhir.
_______________________________________________________________________________________________________
Most insects and animal produce sounds as a way of communication within their species or as noises resulting from feeding or travelling. Automated recognition of bio-acoustic signals is becoming vital in the aspect of biological research or environmental monitoring. With the improvement of technology, scientists today are able to classify types and species of animals by their vocalizations without even need to see the animal or insects with naked eye. Hence, species identification based on their calls or vocalization is an important topic to enhance in the aspect of ecological research. This project aims to develop a frog species voice identification system, recognizing different frog species through analyzing their calls. In the data acquisition stage, databases from Intelligent Biometric Research Group (IBG), School of Electrical and Electronics Engineering, Universiti Sains Malaysia in collaboration with School of Pharmacy, Universiti Sains Malaysia have been used to evaluate the performance of the system. Raw frog call files are processed using Mel-Frequency Cepstral Coefficient (MFCC) technique to extract features that will be needed in testing and training the system. In this project, the classifier used is Sparse Representation Classifier (SRC) and Kernel Sparse Representation Classifier (KSRC). Performance between SRC and KSRC is compared and discussed in this project. Besides, a graphic user interface (GUI) is also developed to facilitate the user while interacting with the system. Two experiments were done in this project, both using SRC and KSRC. In short, KSRC (96.6667%) has a higher performance in accuracy compared to SRC (95.6667%). However, KSRC takes a longer computation time compared to SRC. A GUI was developed implementing KSRC with feature dimension of 64-by-64 as an outcome of this project.