(For USM Staff/Student Only)

EngLib USM > Ω School of Electrical & Electronic Engineering >

High-speed implementations of fractal image compression for low and high resolution images / Abdul Malik Haider Yusef Saad

High-speed implementations of fractal image compression for low and high resolution images_Abdul Malik Haider Yusef Saad_E3_2018_MYMY
Pemampatan Imej Fraktal (PIF) adalah teknik pengekodan yang sangat terkenal digunakan dalam aplikasi berkaitan imej/video disebabkan keringkasannya dan prestasinya yang tinggi. Walau bagaimanapun, kelemahan besar PIF adalah dari segi algoritmanya yang mengambil masa panjang, terutamanya apabila pencarian-penuh dibuat. Oleh itu, pencapaian operasi masa nyata adalah sangat mencabar terutamanya apabila algoritma ini dioperasikan pada pemproses biasa mahupun grafik. Oleh itu, penyelidikan ini mencadangkan perlaksanaan perkakasan baharu bagi mempercepatkan proses nyahkod menggunakan keselarian dan penalian paip. Pelbagai pendekatan telah dikaji untuk mencapai prestasi berkelajuan tinggi. Sebagai permulaan, pengiraan kompleks operasi fraktal dikaji bagi memilih saiz bit yang minimum dan efisien yang memberi hasil kualiti mengekod sama atau hampir sama. Ini menghasilkan perkakasan PIF yang agak baharu dan dikenali dalam tesis ini sebagai Rekaan I (Design I). Dalam rekaan ini, pendekatan pencarian-penuh diguna pakai untuk membolehkan penjanaan semula pada kadar kualiti tertinggi. Rekaan ini sesuai untuk mengekod imej beresolusi rendah memandangkan masa pengekodan meningkat secara eksponen apabila memproses imej yang beresolusi tinggi. Masalah ini telah diselesaikan melalui Rekaan II (Design II) yang menggunakan dasar skema pencarian-separa untuk mencapai operasi masa nyata. Kaedah ini mengeksplotasikan kewujudan hubung kait yang tinggi antara piksel di sekitar kawasan berdekatan dalam imej digital, seterusnya merangkumkan ruang pencarian pada kawasan tersebut sahaja. Dengan menetapkan ruangan-ruangan ini untuk setiap kumpulan lingkungan blok dan membahagikan imej di mana setiap domain blok mengandungi empat lingkungan blok, membolehkan dua operasi pemadanan dilakukan serentak. Ini mengurangkan capaian memori sehingga separuh dan seterusnya menyebabkan kelajuan meningkat dua kali ganda. Rekaan ini telah diperluaskan untuk mengekod imej RGB, menghasilkan satu lagi rekaan baharu dikenali; sebagai Rekaan III (Design III). Dalam rekaan ini, hubung kait silang yang kuat antara komponen imej dieksploitasikan menyebabkan hanya komponen G dikod menggunakan pendekatan sama seperti dalam rekaan II, sementara komponen R dan B dikod menggunakan skema dasar tanpa pencarian dengan pemetaan terus antara blok yang bertindih. Ketiga-tiga rekaan telah diuji dari segi masa jalan, nisbah puncak isyarat ke hingar (PSNR) dan kadar pemampatan. Keputusan eksperimen Rekaan I apabila dilaksanakan dalam Altera Cyclone II FPGA, menunjukkan kenaikan halaju dengan purata 3 kali ganda, sementara PSNR tidak menunjukkan perubahan besar. Keputusan empirik menunjukkan bahawa perisian tegar ini adalah setara apabila dibandingkan dengan pencarian-penuh perkakasan lain dengan PSNR purata 30 dB, kadar pemampatan 5.82% dan masa jalan 9.8 ms. Manakala itu, Rekaan II telah disintesiskan pada Altera Stratix IV FPGA dan menunjukkan kebolehan untuk mengekod resolusi imej 1024×1024 pada 395 MHz dalam 10.8 ms dengan PSNR purata 27 dB dan kadar pemampatan 34. Keputusan ini menunjukkan bahawa pendekatan yang dicadangkan membolehkan imej berwarna dikod pada halaju yang hampir sama seperti imej skala kelabu. Selain itu, senibina yang dicadangkan boleh mencapai prestasi lebih baik jika dibandingkan dengan rekaan canggih, dengan purata halaju sebanyak 100, 92 dan 83 fps untuk Rekaan I, II dan III masing-masingnya. _______________________________________________________________________ Fractal Image Compression (FIC) is a very popular coding technique that is used in image/video applications due to its simplicity and superior performance. The major drawback of FIC is that it is a time consuming algorithm, especially when a full search is attempted. Hence, it is very challenging to achieve a real-time operation especially when this algorithm is run on a general or graphic processor unit. Therefore, in this research new hardware implementations of FIC are proposed for accelerating the encoding process by means of parallelism and pipelining. Various approaches have been investigated for achieving high speed performance. The computational complexity of fractal operations are first investigated in order to select the minimum and efficient bit sizes that can provide similar or nearly similar encoding quality. This has resulted in a relatively new FIC hardware which is referred in this thesis as Design I. In this design, a full-search approach was adopted in order to enable reconstruction at highest possible quality. However, full-search scheme is not suitable for encoding larger images since the encoding time is increased dramatically when processing high-resolution images. This problem is solved in Design II which used a partial-search based scheme in order to achieve high-speed operation. This method exploits the inherently high degree of correlation between pixels in the neighbourhood areas in digital image to restrict the search space to those areas. By fixing these areas for each group of range blocks and partitioning an image in which each domain block contains four range blocks, enabled two matching operations be performed simultaneously. This reduced the memory access by half, thereby, doubling the speed by a factor of 2. This design was extended to encode RGB image, resulting in another new design referred to as Design III. In this design, the strong cross-correlation between the image components was exploited so that only the G component was encoded using the same approach as in Design II, while the R and B components were encoded by searchless-based scheme with direct mapping between overlapped blocks. All three designs were examined in terms of runtime, peak-signal-to-noise-ratio (PSNR), and compression rate. The experimental results of Design I when implemented in Altera Cyclone II FPGA, showed speedup of 3 times, on average, while the PSNR was not significantly affected. Empirical results demonstrated that this firmware is competitive when compared to other existing full-search hardware with PSNR averaging at 30 dB, 5.82 % compression rate and a runtime of 9.8 ms. On the other hand, Design II was synthesised on Altera Stratix IV FPGA and showed an ability to encode a 1024×1024 image at 395 MHz in 10.8 ms with PSNR averaging at 27 dB and compression rate of 34. These results suggest that the proposed approach enables colour images be encoded at approximately same speed as grayscale images. Also the proposed architectures have achieved better performance compared to the state-of-the-art designs, with speed averaging at 100, 92 and 83 fps for Design I, II and III respectively.
Contributor(s):
Abdul Malik Haider Yusef Saad - Author
Primary Item Type:
Thesis
Identifiers:
Accession Number : 875008909
Language:
English
Subject Keywords:
averaging; approximately; accelerating
Sponsor - Description:
Pusat Pengajian Kejuruteraan Elektrik & Elektronik -
First presented to the public:
2/1/2018
Original Publication Date:
9/24/2020
Previously Published By:
Universiti Sains Malaysia
Place Of Publication:
School of Electrical & Electronic Engineering
Citation:
Extents:
Number of Pages - 166
License Grantor / Date Granted:
  / ( View License )
Date Deposited
2020-09-24 16:19:16.681
Submitter:
Mohamed Yunus Yusof

All Versions

Thumbnail Name Version Created Date
High-speed implementations of fractal image compression for low and high resolution images / Abdul Malik Haider Yusef Saad1 2020-09-24 16:19:16.681