(For USM Staff/Student Only)

EngLib USM > Ω School of Civil Engineering >

Form finding and shape change analysis of spine inspired bio-tensegrity model / Oh Chai Lian

Form finding and shape change analysis of spine inspired bio-tensegrity model_Oh Chai Lian_A9_2017_MYMY
Biotensegrity yang diilhamkan oleh organisma hidup memiliki sebahagian besar sifat mekanik cemerlang yang terkandung dalam sistem biologi seperti kecekapan, berkestabilan diri, berhierarki dan berupaya menyalurkan pelbagai fungsi. Di samping itu, biotensegrity sebagai satu model yang terhasil daripada inspirasi rupa bentuk dan fungsi sistem biologi yang berhierarki juga menunjukkan potensinya dalam perubahan bentuk. Maka, kajian biotensegrity sebagai satu alternatif baru dalam aplikasi yang memerlukan perubahan bentuk seperti lengan fleksibel dalam industri pembinaan adalah diperlukan. Walau bagaimanapun, penyelidikan dalam menghasilkan konfigurasi dan model matematik biotensegrity yang melibatkan perubahan bentuk adalah terhad. Dengan ini, model yang berinspirasikan sistem biologi terutamanya dari segi rupa bentuk seperti dimensi dan lengkungan semula jadi tetulang belakang manusia yang berkeupayaan dalam perubahan bentuk untuk kegunaan sebagai alatan robot adalah tujuan utama kajian ini. Khususnya, penyelidikan ini bertujuan untuk (1) memperolehi konfigurasi model biotensegrity berunsurkan tetulang belakang manusia, spine biotensegrity structure (SBS) melalui fomulasi matematik, (2) mencadangkan algoritma untuk tujuan simulasi perubahan bentuk, dan (3) mengkaji perilaku model asli SBS. Metodologi kajian ini melibatkan tiga fasa. Dalam fasa pertama, prosedur pencarian konfigurasi model biotensegrity yang berunsurkan tetulang belakang manusia yang bertingkat empat dan jenis kelas satu telah diterbitkan. Usaha pencarian konfigurasi ini melibatkan kaedah menyelesaikan persamaan sistem keseimbangan melalui cara Moore- Penrose generalized inverse, penentuan ragam tegasan keseimbangan-diri melalui asas penguraian serta pengoptimunan pekali untuk gabungan linear ragam tegasan keseimbangandiri. Kelebihan ciri tetulang belakang manusia seperti kelangsingan, kelengkungan semula jadi dan unsur rangkaian penstabilan seperti tetulang dan otot telah digunakan dalam pencarian konfigurasi model SBS. Di samping itu, dua kaedah khusus yang berkesan telah digunakan dalam pencarian konfigurasi model SBS yang berkeseimbangan-diri, iaitu dengan melalui pelarasan sudut putaran dan juga penganjakan kordinasi nod asal. Setelah usaha pencarian konfigurasi model SBS yang berkeseimbangan-diri, keupayaan model tersebut menjalani proses perubahan bentuk secara tambahan telah disiasat dalam fasa kedua. Khususnya, nod model SBS yang tidak dikekang telah dipilih sebagai nod dipantau di mana nod tersebut diperlukan untuk mencapai anjakan sasaran yang dinyatakan dalam magnitud tertentu. Keupayaan dalam perubahan bentuk model SBS ke arah sasaran boleh dicapai dengan pemanjangan kabel. Strategi pengiraan untuk perubahan bentuk melibatkan dua peringkat: penerbitan persamaan keseimbangan tambahan dan pengoptimunan pemanjangan kabel dengan pengaturcaraan berjujukan quadratik (sequential quadratic programming). Dalam fasa ketiga, ciri-ciri model SBS seperti konfigurasi dan perubahan dalam daya paksi setelah analisis perubahan bentuk telah disiasat. Empat mod pergerakan berikut telah dikaji untuk menyiasat ciri-ciri model SBS setelah perubahan bentuk: mod pergerakan dalam satu, dua, tiga arah dan mod putaran. Kajian ini telah berjaya memperolehi konfigurasi biotensegrity berunsurkan tetulang belakang manusia berkeseimbangan-diri. Sebanyak tiga konfigurasi model yang baru telah dihasilkan. Kajian ini juga mencadangkan prosedur yang melibatkan pengiraan perubahan bentuk secara tambahan untuk model SBS. Simulasi berangka ke atas tensegrity biasa dan model SBS telah menunjukkan sifat penumpuan yang unggul untuk algoritma yang dicadangkan dalam analisis perubahan bentuk. Hasil kajian ini menunjukkan algoritma yang dicadangkan adalah berkesan bagi model yang berkeseimbangan-diri untuk mencari kordinat sasaran dalam pelbagai mod pergerakan melalui pemanjangan kabel. Hasil kajian ini juga menunjukkan bahawa model SBS berkeupayaan dalam perubahan bentuk secara lenturan, ubah bentuk paksi dan kilasan di samping menunjukkan perubahan daya dalam anggota yang ketara semasa perubahan bentuk. Perubahan daya paksi yang aktif terutama dalam kumpulan elemen yang jauh dari nod dipantau juga dikesan. Sebagai kesimpulan, hasil kajian ini memberi sumbangan ke arah merealisasikan lengan fleksibel yang berunsurkan tetulang belakang yang berkeupayaan pelbagai corak perubahan bentuk. _______________________________________________________________________ Biotensegrity mimicking the living organisms possesses excellent characteristics that duly demonstrate most of the properties in biological systems such as efficiency, self-stabilization, multi-modularity and multi-functional. Moreover, biotensegrity as a model emulated from the forms and functions of hierarchical biological system reveals its great potential in shape change ability. Therefore it is highly suitable to study biotensegrity as a new alternative choice for possible application where shape change ability is desired such as flexible arm in construction industry. However, there are limited studies on form finding of biotensegrity configurations and mathematical models on shape change of biotensegrity. Mimicking biological system by their shape, pertinent anatomical dimensions and natural curvature of human spine to seek its potential in shape change beneficial to application like automated robotic tools is the overall aim of this study. Specifically, this basic study aims to (1) formulate mathematical procedures for finding self-equilibrated configurations of spine biotensegrity structure (SBS) models (2) formulate computational strategy for simulating the shape change of novel SBS models, and (3) evaluate the characteristics of the novel SBS models. The methodology for this study consists of three phases. In the first phase, assemblage and mathematical formulation procedure for form finding of self-equilibrated four-stage class 1 biotensegrity models inspired by human spine or spine biotensegrity (SBS) models are established. The form-finding procedure involves method of solving the system of equilibrium equations through the use of Moore-Penrose generalized inverse, determination of self-equilibrium stress modes via eigenvector basis decomposition and optimization of coefficients for the linear combination of linearly independent selfequilibrium stress modes. Advantageous features of human spine like the slenderness and natural curvature in the geometry, as well as the stabilizing network consist of spinal column and muscle are incorporated in the mathematical formulation of the configuration of the SBS models. Additionally, two specific approaches in modification of nodal coordinates are implemented to improve the efficiency for form-finding of self-equilibrated SBS models, i.e. by means of adjustment of twist angles and modification of initial nodal coordinates. After successful searching of the configuration of self-equilibrated SBS models, the ability of the models to undergo shape change to achieve the prescribed state is investigated in the second phase. Specifically, unconstrained nodes of SBS model are chosen as monitored nodes where these nodes are required to reach a set of target displacements in prescribed magnitudes and directional modes. The shape change of SBS models towards target state is achieved by means of forced elongation of cable. Computational strategies for the shape change consist of two stages: the derivation of incremental equilibrium equations and optimization of the cables forced elongation by sequential quadratic programming. In the third phase, the structural characteristics of SBS models such as the deformed configurations and changes of axial force at the end of shape change analysis are investigated. The following four cases of target displacements are studied in order to investigate the characteristics of SBS models after shape change: uni-, bi-, tri-directional and twisting modes. The current study has successfully formulated mathematically the self-equilibrated configuration of SBS models inspired by human spine. A total of three novel selfequilibrated configurations of SBS models were searched. This study has also proposed a set of procedures involving incremental calculation for shape change analysis of SBS models. Numerical simulations of the regular tensegrity and SBS models have proven the superior convergent characteristic of the proposed algorithm for shape change analysis. The results reveal that the proposed approach for shape change analysis has a very strong ability for a self-equilibrated model to search their desired target coordinates in multi-directional modes through optimization of the forced elongation in cables. It is also found that the SBS models are capable to undergo bending, axial and torsional deformation. Active changes in forces in element groups even within the far-away element groups of SBS models are observed during the shape change analysis. In conclusion, the findings of this basic study have paved the way for realization of spine inspired flexible arm with magnitude shape change ability.
Contributor(s):
Chai Lian Oh - Author
Primary Item Type:
Thesis
Identifiers:
Accession Number : 875008915
Language:
English
Subject Keywords:
unconstrained; tri-directional; self-equilibrated
Sponsor - Description:
Pusat pengajian Kejuruteraan Awam -
First presented to the public:
3/1/2017
Original Publication Date:
9/29/2020
Previously Published By:
Universiti Sains Malaysia
Place Of Publication:
School of Civil Engineering
Citation:
Extents:
Number of Pages - 277
License Grantor / Date Granted:
  / ( View License )
Date Deposited
2020-09-29 16:19:03.625
Submitter:
Mohamed Yunus Yusof

All Versions

Thumbnail Name Version Created Date
Form finding and shape change analysis of spine inspired bio-tensegrity model / Oh Chai Lian1 2020-09-29 16:19:03.625