Penuaian mikroalga adalah penting untuk mengumpul biojisim mikroalga sebagai bahan mentah bahan api bio dan untuk mengelakkan pencemaran air sekunder yang disebabkan oleh penguraian biojisim mikroalga dalam air. Pemisahan mikroalga dengan pemisahan bermagnet telah diiktiraf sebagai kaedah boleh laksana untuk menuai mikroalga. la dilakukan melalui pelekatan nano zarah ferum oksida (IONPs) pada permukaan sel untuk memberikan sifat bermagnet terhadap sel-sel dan seterusnya membolehkan pengumpulan sel dengan menggunakan magnet kekal. Mekanisme elektrostatik-pengantara-pelekatan yang membolehkan pelekatan dan penanggalan zarah-pada-sel mikroalga biasanya dilakukan melalui penyelarasan pH. Walau bagaimanapun, keperluan penyelarasan pH pada media pengkulturan mikroalga menghalangnya daripada diaplikasi pada berskala besar. Oleh itu, kaedah perfungsian pada permukaan IONPs untuk membentuk permukaan berfungsi IONPs (SF-IONPs) yang bercas positif perlu dilakukan untuk mengatasi kelemahan penyelarasan pH. Penyelidikan ini merangkumi pencirian SF-IONPs, pemodelan interaksi zarah-pada-sel mikroalga, kinetik pemisahan dalam pemisahan bermagnet berkecerunan rendah (LGMS), dan kebolehlaksanaannya pada rawatan air dan penghasilan bahan api bio. SF-IONPs yang stabil dan bercas positif yang telah disediakan melalui kaedah "immobilized-on" boleh melekat pada Chlorella vulgaris air tawar melalui tarikan elektrostatik (ES). Permukaan perfungsian menggunakan poli(diallyldimethylammonium klorida) (PDDA) dipilih daripada kitosan disebabkan cas permukaannya tidak bergantung pada pl-l. Kecekapan pemisahan sel yang tinggi iaitu >97% telah diperolehi dalam semua julat PH yang diuji dan kualiti minyak daripada biojisim tidak terjejas. Kajian kinetik menunjukkan bahawa pemisahan sel melalui LGMS (VB<80 T/m) dimulai oleh pengagregatan zarah-pada-sel mikroalga semasa pengeraman dan diikuti oleh medan-teraruh-pengagregatan di bawah medan magnet. Analisis Extended Derjaguin-Landau-Vewey-Overbeek (XDLVO) telah digunakan untuk meramal interaksi di antara SF-IONPs dan sel mikroalga dengan mengambil kira interaksi van der Waals (vdW), ES dan Lewis asid-bes (AB). Interaksi ES didapati menentukan hasil interaksi di antara sel dan SF-IONPs dalam media air tawar manakala interaksi AB dan vdW memainkan peranan dominan dalam air laut. XDLVO meramalkan pelekatan SF-IONPs pada permukaan sel adalah berkesan dengan minimum sekunder sebanyak -3.12 kT, di mana ia selaras dengan keputusan eksperimen. Ini memberikan pemahaman mengenai strategi penanggalan zarah daripada sel supaya diguna semula. Secara keseluruhannya, prestasi SF-IONPs amat bergantung pada kestabilan zarah, berat molekul (MW) PDDA, kepekatan Zarah, dan spesis alga. SF-IONPs yang disalut oleh PDDA yang MW sangat rendah pada dos 100 g PDDA/g IONPs membentuk ampaian yang paling stabil dan ia membolehkan pemisahan C. vulgaris menghampiri 100% dengan kepekatan SFIONPsÈ50 mg/L. Kesan teduhan cahaya dan aglomerasi cel adalah kesan utama yang menyebabkan SF-IONPs (PDDAvl) toksik terhadap pertumbuhan C. vulgaris. Teknologi ini telah terbukti berkesan dan mencapai kos munasabah dalam rawatan air kolam ikan. Kecekapan pemisahan sel sebanyak 90% telah dicapai dan juga kos rawatan air sebanyak USD$ 0.15/m3 dengan dos 0.519 g SF-IONPs/g biojisim kering melalui LGMS. Dalam penghasilan bahan api bio, penambahbaikan diperlukan untuk memenuhi kebolehlaksanaan ekonomi.
___________________________________________________________________________________
Harvesting of microalgae biomass is a crucial step in obtaining the microalgae biomass as biofuel feedstock and also to avoid the secondary water pollution caused by the decomposition of microalgae biomass in the water system. Magnetophoretic separation is being recognized as a feasible method to harvest the microalgae. It is performed via attachment of iron oxide magnetic nanoparticles (IONPs) on the cell surface in order to impart the magnetic property onto the cells and hence enable the subsequent collection of cells by using a permanent magnet. The electrostatic-mediated-attachment mechanism which enables the attachment and detachment of particle-to-microalgal cell is usually done through a series of pH manipulation. However, the need of pH adjustment onto the microalgae culture medium prohibited the use of this technology in large scale application. Therefore, the surface functionalization of IONPs to form positively charged surface functionalized IONPs (SF-IONPs) is carried out in order to overcome the drawback associated with pH manipulation. This study looked into the characterization of the prepared SF-IONPs, the modeling of particle-to-microalgal cell interaction, the separation kinetic in low gradient magnetic separation (LGMS), and its feasibility on water treatment and biofuel production. The colloidally stable positively charged SFIONPs which were prepared via immobilized-on approach promote effective electrostatic attachment of SF-IONPs on the freshwater Chlorella vulgaris. The surface functionalization using poly(diallyldimethylammonium chloride) (PDDA) was chosen over chitosan since its surface charge are not pH dependent. A high cell separation efficiency of > 97 % was obtained in all range of pH tested and the oil quality from the harvested biomass was not affected. The kinetic study indicated that the cell separation is initiated via particle-to-microalgal cell aggregation during incubation followed by field-induced-aggregation under magnetic field in LGMS with VB < 80 T/m. Extended Derjaguin-Landau-Vewey-Overbeek (XDLVO) analysis employed to predict the interaction between SF-IONPs and microalgal cells took into account the van der Waals (vdW), ES and Lewis acid-base (AB) interactions. The ES interaction governed the net interaction between cell and SFIONPs in freshwater media while the AB and vdW interactions play a dominant role in seawater. XDLVO predicted effective attachment of SF-IONPs onto cell surface with a secondary minimum of -3.12 kT, which is in accordance with the experimental result. This gave an insight on the strategy of particle detachment from cell for reuse. In overall, the performance of SF-IONPs is strongly depending on the particle stability, molecular weight (M W) of PDDA, particle concentration, and the microalgae species. The SF-IONPs coated by very low MW PDDA at dosage of 100 g PDDA/g IONPs formed the most colloidally stable suspension and it enabled the separation of C. vulgaris at almost 100 % efficiency with SF-IONPs concentration of > 50 mg/L. The light shading effect and cell agglomeration were the main toxic effect of SF-IONPs (PDDAvI) toward the growth of C. vulgaris. This technology was proven effective and cost feasible in fishpond water treatment. A cell separation efficiency of 90 % was achieved and at water treatment cost of USD$O. 15/m3 with a dosage of 0.519 g SF-IONPs/g dry biomass under the LGMS. In biofuel production, further improvement is required to meet the economic feasibility.