Pengenalan muka telah dianggap sebagai teknik popular untuk mengenali identiti seseorang. Banyak algoritma pengecaman wajah telah dibangunkan dan diubahsuai oleh penyelidik. Kertas kerja ini akan mengkaji prestasi algoritma pengiktirafan tiga muka yang PCA, Modular PCA dan LDA. Algoritma ini pengiktirafan tiga muka akan melaksanakan untuk menentukan algoritma mempunyai prestasi yang terbaik. Prestasi ini algoritma pengecaman wajah akan dinilai oleh pengesahan silang 10 kali ganda menggunakan pangkalan data ORL. Teknik K-kali akan membahagikan pangkalan data imej ke dalam k kali ganda yang mempunyai saiz atau segmen yang sama. Sembilan kali ganda akan digunakan untuk set latihan dan baki satu kali ganda yang akan digunakan sebagai pengesahan menetapkan untuk mengira ketepatan sistem. PCA dikenali sebagai eigenface unjuran untuk memindahkan ruang imej untuk ruang ciri dimensi rendah. Modular PCA adalah untuk membahagikan imej ke dalam sub-imej dan kemudian memohon PCA di atasnya. LDA digunakan untuk memisahkan dua atau kelas lebih lanjut dan sertakan penduduk di dalam kelas. Kadar pengiktirafan PCA, Modular PCA dan LDA adalah 96.25%, 85.75% dan 89% masing-masing.
_______________________________________________________________________________________________________
Face recognition has been considered as a popular technique to recognise identity of a person. Many face recognition algorithms have been developed and modified by researchers. This paper will study the performance of three face recognition algorithms which are PCA, Modular PCA and LDA. These three face recognition algorithms will be implement to determine which algorithm has the best performance. The performance of these face recognition algorithms will be evaluated by 10-fold cross validation using ORL database. K-fold technique will divide the image database into k-fold that has the same size or segment. Nine-fold will be used for training sets and the remaining one-fold will be used as validation sets to calculate the accuracy of the system. PCA is known as eigenface projection to transfer the image space to low dimension feature space. Modular PCA is to divide an image into sub-image and then apply PCA on it. LDA is used to separate two or more class further and enclose population in the class. The recognition rate for PCA, Modular PCA and LDA is 96.25%, 85.75% and 89%, respectively.