(For USM Staff/Student Only)

EngLib USM > Ω School of Electrical & Electronic Engineering >

An improved design of piezoelectric raindrop energy harvester / Wong Chin Hong

An improved design of piezoelectric raindrop energy harvester_Wong Chin Hong_E3_2017_MYMY
Penuaian tenaga titisan hujan memberikan sumber tenaga alternatif yang boleh digunakan semasa hujan. Walaupun penyelidikan yang ekstensif telah disiasat berkenaan penuaian tenaga titisan hujan mengunakan mekanisme piezoelektrik, penuai piezoelektrik tenaga titisan hujan (Piezoelectric Raindrop Energy Harvester (PREH)) yang bercekapan tinggi masih dalam penyelidikan. Kajian penyelidikan ini membentangkan rekabentuk dan pembangunan penambahbaikan rekabentuk baik PREH. Untuk mencapai rekabentuk yang lebih baik, beberapa langkah telah dilaksanakan. Ini termasuk siasatan ke atas profil titisan hujan untuk meramalkan tenaga kinetik dalam titisan hujan. Hasil kajian mendapati bahawa jumlah tenaga kinetik bergantung kepada saiz titisan dan halaju jatuh. Kedua, eksperimen telah dijalankan untuk membandingkan prestasi transduser PVDF komersial yang sering digunakan iaitu struktur jambatan dan julur yang tertakluk kepada titisan hujan simulasi. Keputusan eksperimen menunjukkan bahawa transduser berstruktur jambatan dengan dimensi 30 mm × 4 mm × 25 μm menjana voltan litar terbuka lebih tinggi daripada struktur julur, iaitu 4.22 V dan 0.41 V masing-masing. Langkah seterusnya adalah analisis kaedah unsur terhingga (FEM) melalui perisian COMSOL Multiphysics untuk menyiasat voltan litar terbuka, ketumpatan cas, pesongan transducer, dan frekuensi resonans. Berdasarkan struktur jambatan itu, pelbagai jenis struktur telah diubahsuai iaitu transduser berbentuk S, berbentuk zigzag, berbentuk H, dan berbentuk-X telah disiasat dengan lebih lanjut melalui simulasi FEM. Berdasarkan keputusan simulasi, struktur optimum PREH adalah struktur enam jejari roda kuda kereta iaitu struktur yang diubahsuai daripada bentuk-X. Transduser tersebut dapat menjana 63.85% voltan lebih tinggi dan 223.42% caj ketumpatan lebih tinggi daripada transduser berstruktur jambatan. Oleh itu, transduser berstruktur enam jejari roda kuda kereta dipilih untuk difabrikasi. Transduser PVDF yang telah difabrikasi ditentusahkan dan dicirikan oleh analisis pembelaluan sinar-X (X-ray diffraction (XRD)), dan analisis spektroskopi inframerah transformasi fourier (fourier transform infrared spectroscopy (FTIR)). Pemalar piezoelektrik telah dipertingkatkan ke 7 pC/N dan kandungan fasa-β d ert ngkatkan ke 57 8% oleh proses poling korona. Transduser yang difabrikasi menjana DC voltan 22.5 mV dan kuasa elektrik 15.3 nW apabila diimpak daripada titisan hujan. Berdasarkan keputusan simulasi, prestasi enam jejari roda kuda kereta adalah lebih baik daripada struktur jambatan. Tetapi, keputusan eksperimen menunjukkan keputusan yang sebaliknya. Ini disebabkan pemalar piezoelektrik, d33, untuk transduser yang difabrikasi (7 pC/N) adalah lebih rendah daripada transduser komersial (16 pC/N). Kelainan daripada nilai d33 ini adalah disebabkan oleh voltan poling terhad dalam radas poling. Secara keseluruhannya, kajian ini telah berjaya menyelidik rekabentuk PREH yang lebih baik melalui simulasi dan eksperimen. Tenaga titisan hujan akan menjadi alternatif yang baik untuk sistem kuasa semasa hari hujan. Walaupun kuasa adalah dianggap kecil, ia membuktikan bahawa tenaga titisan hujan itu akan menjadi satu kaedah yang berpotensi dalam aplikasi penuaian tenaga. __________________________________________________________________________________ Raindrop energy harvesting provides a good energy resource that can be applied in rainy environments. While extensive research has been investigated on raindrop energy harvesting by using piezoelectric mechanism, a higher efficiency of piezoelectric raindrop energy harvester (PREH) are still in on-going research. This research study presents design and development of an improved design of PREH. In order to achieve the desired improved design, several steps have been conducted. This includes investigation on the raindrop profiles to predict the kinetic energy in a falling droplet. It was found that the total kinetic energy depends on the droplet sizes and fall velocities. Secondly, an experiment was conducted to compare the performances of commonly used commercial PVDF transducers which are bridge and cantilever structures which were subjected to simulated raindrops. Experimental results showed that, the bridge structure transducer with dimension of 30 mm × 4 mm × 25 μm generated higher open-circuit voltage than cantilever structure, which is 4.22 V and 0.41 V, respectively. The next step is the Finite Element Method (FEM) analysis through COMSOL Multiphysics software to investigate open-circuit voltage, charge density, deflection of transducer, and resonance frequency. Based on the bridge structure, various types of modified structures; S-shaped, zigzag-shaped, H-shaped, and X-shaped transducers were further investigated via FEM simulation. Based on the simulation results, the optimum structure of PREH is the six-spoke wagon wheel structure which is modified from X-shaped. It generated 63.85% higher voltage and 223.42% higher charge density than the basic bridge structure transducer. Therefore, the six-spoke wagon wheel transducer is selected to be fabricated. The fabricated PVDF transducer is also validated and characterised by X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FTIR) measurements. The ezoelectr c constant was enhanced to 7 C/N and the β-phase content was improved to 57.8% by corona poling process. The fabricated transducer generated DC voltage of 22.5 mV and electrical power of 15.3 nW as impacted by actual raindrops. Based on simulation results, the performance for six-spoke wagon wheel structure is better than the bridge structure. However, the experimental results showed the other way. This is due to the piezoelectric constant, d33, for the fabricated transducer (7 pC/N) is lower than commercial transducers (16 pC/N). The discrepancy of the value of the d33 is due to the limited poling voltage in the poling apparatus. In overall, the research has successfully investigated an improved design of PREH through simulation and experimental. Although the power is considerably small, it is proven that the raindrop energy would be a promising approach in energy harvesting application.
Contributor(s):
Chin Hong Wong - Author
Primary Item Type:
Thesis
Identifiers:
Accession Number : 875008438
Language:
English
Subject Keywords:
piezoelectric; COMSOL; H-shaped
First presented to the public:
1/1/2017
Original Publication Date:
12/6/2019
Previously Published By:
Universiti Sains Malaysia
Place Of Publication:
School of Electrical & Electronic Engineering
Citation:
Extents:
Number of Pages - 220
License Grantor / Date Granted:
  / ( View License )
Date Deposited
2019-12-06 15:58:53.346
Date Last Updated
2020-11-13 10:34:34.072
Submitter:
Mohamed Yunus Yusof

All Versions

Thumbnail Name Version Created Date
An improved design of piezoelectric raindrop energy harvester / Wong Chin Hong1 2019-12-06 15:58:53.346