(For USM Staff/Student Only)

EngLib USM > Ω School of Chemical Engineering >

Synthesis of monolayer graphene on polycrystalline nickel and nickel-copper bimetallic catalyst and study toward the reuse of nickel catalyst / Seah Choon Ming

Synthesis of monolayer graphene on polycrystalline nickel and nickel-copper bimetallic catalyst and study toward the reuse of nickel catalyst_Seah Choon Ming_K4_2016_MYMY
Grafena merupakan struktur karbon dengan ketebalan satu atom. Grafena terdedah semua atomnya ke medium sekitar. Selepas penemuan grafena pada 2004, ia menjadi subjek utama penyelidikan di seluruh dunia. Grafena mempunyai sifatsifat yang luar biasa dari segi mekanikal, optik, haba dan elektrik. Sifat-sifat tersebut menjadikan grafena berpotensi digunakan dalam pelbagai aplikasi. Pemendapan wap kimia bermangkin (CVD) adalah saluran yang paling baik untuk menghasilkan grafena berskala wafer, kerana teknik ini mempunyai kelebihan dalam proses pemisahan grafena daripada pemangkin selepas CVD. Dengan bantuan penyejukan pantas, grafena berlapis tunggal berjaya dibentuk pada foil nikel polibabluran dibawah CVD tekanan atmosfera, dengan suhu 850 ºC, tekanan separa metana 0.2 atm and 5 min tempoh reaksi. Tetapi grafena berlapis tunggal gagal didentuk dengan menggunakan foil kuprum sahaja. Penyejukan pantas selepas CVD mendorongkan pelindapkejutan aktiviti pemangkin dan menghadkan kadar difusi karbon dalam nikel ke permukaan nikel. Proses ini memudahkan pembentukan grafena berlapis tunggal berskala wafer. Untuk meningkatkan keseragaman grafena berlapis tunggal, satu teknik mudah digunakan untuk menumbuh grafena berlapis tunggal secara serentak pada kedua-dua foil nikel polihabluran dan foil kuprum polihabluran, pada suhu 950 ºC, tekanan separa metana 0.2 atm and 5 min tempoh reaksi. Stuktur grafena yang seragam dan berkualiti tinggi dapat dibukti dengan spektroskopi Raman dan mikroskop transmisi electron resolusi tinggi. Sistem pemangkin dwilogam yang dicadang membolehkan pengawalan difusi karbon ke permukaan dalam foil Ni dan Cu. Khususnya, kebolehcapaian karbon dapat dikurangkan pada permukaan Ni dalaman, manakala Cu memainkan peranan sebagai penghalang karbon. Mekanisme pertumbuhan grafena berlapis tunggal dapat dibantu denagn difusi karbon melalui bijian Ni dan sempadan bijian Ni. Daya penggerak untuk difusi karbon datang daripada kepekatan kecerunan karbon antara permukaan yang kaya dengan karbon dan permukaan kurang karbon. Sempadan bijian Ni telah terbukti memainkan peranan yang penting dalam kawalan difusi karbon semasa peringkat pertumbuhan. Dengan bantuan penyejukan pantas, proses pelindapkejut mengurangkan jumlah atom karbon diasing dari Ni, hanya atom karbon yang terletak berhampiran permukaan Ni mempunyai masa yang cukup untuk mengasing dan membentuk grafena. Sementara itu difusi atom karbon dalam tengah foil Ni telah dihalang dan lepas itu membentuk Ni3C. Ni3C dikenali sebagai perlindungan yang baik terhadap kakisan. Kehadiran Ni3C digabungkan dengan penggunaan ferum nitrat (0.5mol/L) sebagai bahan punar lemah semasa pemisahan grafena, foil Ni boleh digunakan semula sehingga 6 kali tanpa menyebabkan sisihan yang besar terhadap kualiti dan keseragaman grafena berlapis dua. Ni3C ternyata mampu untuk menghadkan kesan punaran foil Ni. Kerja-kerja ini telah berjaya mempamerkan cara yang mudah dan novel untuk mensintesis grafena berlapis tunggal dengan kualiti yang tinggi. _______________________________________________________________________ Graphene is a layer of sp2 hybridized carbon atoms with a thickness of only one atom, which exposed most of its atoms to the surrounding medium. Since the discovery of graphene in 2004, it has become the main subject of research around the world. The attractiveness of graphene is mainly attributed to its remarkable mechanical, optical, thermal and electrical properties, enabling graphene to be potentially used in various applications. To date, CVD is the promising method to produce wafer-scale graphene, because it allows an easier separation of graphene from the catalytic substrate. With the assist of fast cooling, monolayer graphene was grown directly on polycrystalline Ni foil under atmospheric pressure CVD with temperature of 850 ºC, methane partial pressure of 0.2 atm and reaction duration of 5 min. However, monolayer graphene could not be formed on Cu under the chosen CVD conditions. Fast cooling after CVD allowed the quenching of the activity of the catalyst and limiting diffusion of dissolved carbon to the surface of Ni, which later facilitate the formation of predominantly wafer scale monolayer graphene. To further improve the uniformity of monolayer graphene, a facile technique was applied to grow monolayer graphene simultaneously on both polycrystalline Ni and Cu foils using a Ni-Cu bilayer catalyst at temperature of 950 ºC, methane partial pressure of 0.2 atm and reaction duration of 5 min. High uniformity and quality of the crystalline structure of the grown graphene was evidenced by Raman spectroscopy mapping and High Resolution Transmission Electron Microscope. The straightforward bimetallic catalytic system allows the control of carbon diffusion to the interface of Ni and Cu. In particular, carbon accessibility is reduced at the inner Ni surface, and Cu behaves as a carbon barrier. The growth mechanism of monolayer graphene was facilitated by carbon diffusion through the bulk and Ni grain boundary, the driving force coming from concentration gradient between carbon-rich surface to carbon-lacked surface. The grain boundaries were shown to play a crucial role in carbon control during the growth stage. Facilitated by the applied fast cooling, the quenching process reduced the amount of carbon atoms segregated, only the carbon atoms situated near the surface had enough time to segregate and form graphene. Meanwhile, diffusion of carbon atoms at the middle of the Ni foil was highly inhibited; forming Ni3C. Ni3C is known to offer good protection against corrosion. The presence of Ni3C combined with the use of iron nitrate (0.5mol/L) as soft etchant for graphene separation, the Ni foil could be reused again up to 6 cycles without causing a huge deviation on the quality and the uniformity of bilayer graphene. Ni3C is indeed able to limit the etching effect of the Ni foil. This work has successfully demonstrated a simple and novel route to synthesize monolayer graphene with high quality.
Contributor(s):
Choon Ming Seah - Author
Primary Item Type:
Thesis
Identifiers:
Accession Number : 875008866
Language:
English
Subject Keywords:
monolayer; predominantly; atmospheric
Sponsor - Description:
Pusat Pengajian Kejuruteraan Kimia -
First presented to the public:
3/1/2016
Original Publication Date:
8/27/2020
Previously Published By:
Universiti Sains Malaysia
Place Of Publication:
School of Chemical Engineering
Citation:
Extents:
Number of Pages - 202
License Grantor / Date Granted:
  / ( View License )
Date Deposited
2020-08-27 12:42:41.631
Date Last Updated
2020-08-27 12:43:53.001
Submitter:
Mohamed Yunus Yusof

All Versions

Thumbnail Name Version Created Date
Synthesis of monolayer graphene on polycrystalline nickel and nickel-copper bimetallic catalyst and study toward the reuse of nickel catalyst / Seah Choon Ming1 2020-08-27 12:42:41.631