(For USM Staff/Student Only)

EngLib USM > Ω School of Chemical Engineering >

Synthesis of open-shell iron oxide-polyelectrolyte-silica nanocomposite for water treatment application / Che Hui Xin

Synthesis of open-shell iron oxide-polyelectrolyte-silica nanocomposite for water treatment application_Che Hui Xin_K4_2017_MYMY
Nanokomposit silika-polielektrolit-ferum oksida disintesis melalui teknik lapisan-demi-lapisan. Di sini, silika disintesis melalui proses Stöber dan nanopartikel ferum oksida (IONPs) disintesiskan melalui proses pemendakan-bersama. Kejayaan himpunan nanokomposit yang terdiri daripada silika, polielektrolit dan IONPs boleh dikenalpastikan dengan teknik penyerakan cahaya dinamik (DLS) dan kebolehgerakan elektroforesis. Morfologi nanokomposit “teras-kerangka” dibuktikan melalui mikrograf mikroskop elektron penghantaran (TEM). Nanokomposit menunjukkan kestabilan koloid dapat mencapai tempoh selama 10 jam melalui pemantauan DLS. Berbanding dengan IONPs tanpa fungsi, nanokomposit menunjukkan responsif magnet yang lebih tinggi dan boleh dipisahkan dalam masa yang singkat di bawah pendedahan kecerunan medan magnet rendah (LGMS). Fenomena antara muka iaitu struktur partikel-polielektrolit dipantau melalui pelesapan tenaga mikroneraca hablur kuarza (QCM-D). Polielektrolit yang bersifat longgar dan anjal menyumbang kepada jumlah yang lebih besar terhadap pemendapan IONPs berbanding dengan permukaan silika tanpa polielektrolit. Peningkatan kepekatan IONPs (20 to 500 ppm) yang diperkenalkan ke atas lapisan polielektrolit, akan memampatkan lapisan partikel dan polielektrolit. Peningkatan kekuatan ion (0.1 to 100 mM) di bawah kepekatan koagulasi kritikal (CCC) iaitu 50 mM natrium klorida (NaCl) yang diperolehi daripada teknik DLS dan teori Derjaguin-Landau-Verwey-Overbeek (DLVO), struktur partikel-polielektrolit menjadi lebih anjal dan menyumbang kepada pemendapan IONPs yang lebih banyak. Struktur yang berkerangka terbuka daripada nanokomposit telah dipelbagaikan dengan hierarki, berat molekul dan struktur polielektrolit yang berlainan. Kajian dari DLS, QCM-D, TEM dan AFM (mikroskop daya atom) menunjukkan jumlah pemendapan IONPs dan molekul-molekul bahan cemar yang lebih tinggi ke dalam rangkaian polielektrolit adalah disebabkan oleh: (1) struktur yang lebih anjal daripada lapisan tunggal berbanding dengan lapisan yang berbilang lapis, (2) struktur rantai terpanjang yang dihasilkan daripada berat molekul polielektrolit yang lebih tinggi, dan (3) ruang yang lebih luas daripada rantaian polielektrolit bercabang berbanding dengan rantaian polielektrolit lelurus. Anggaran purata medan dan skala menunjukkan bahawa rantaian sampingan daripada polielektrolit bercabang menyumbang kepada lapisan serapan yang lebih tebal (16.14 nm) berbanding dengan polielektrolit lelurus (0.19 nm). Dengan menggunakan pewarna kationik Metilena Biru, anionik Metil Jingga dan antibiotik Amoksilin sebagai sistem model, prestasi nanokomposit boleh dibandingkan dengan silika, silika-polielektrolit dan IONPs. Dengan keupayaan menjalankan tindak balas Fenton dan pseudo Fenton dengan kehadiran hidrogen peroksida, nanokomposit lebih efektif dalam penyingkiran bahan cemar berbanding dengan nanopartikel yang lain yang juga disintesiskan dalam kajian ini. Kelebihan nanokomposit yang boleh diasingkan dengan fungsi magnet telah memudahkan nanokomposit dikitar semula untuk proses penyingkiran bahan cemar yang seterusnya. Nanokomposit mengekalkan kecekapan yang tinggi dalam penyingkiran bahan cemar dalam kitaran sebanyak 5 kali tanpa pembubaran IONPs daripada nanokomposit. Proses penyingkiran bahan cemar oleh nanokomposit boleh diilustrasi dengan isoterma Langmuir dan model kinetik pseudo tertib kedua. __________________________________________________________________________________ A open shell structure of silica-polyelectrolyte-iron oxide nanocomposite is synthesized via layer-by-layer assembly. Here, silica colloid is synthesized by Stöber process and iron oxide nanoparticles (IONPs) is synthesized by co-precipitation method. The successful assembly of silica, polyelectrolyte and IONPs into unified nanocomposite was monitored with dynamic light scattering (DLS) and electrophoretic mobility. The core-shell morphology of the nanocomposite was confirmed under the examination of Transmission Electron Microscope (TEM). The final structure showed good colloidal stability up to 10 hours under the monitoring of DLS. The nanocomposite was more magnetically responsive than the bare IONPs with shorten collection time after their exposure to low magnetic field gradient. The interfacial phenomena, which is the conformation of the particles-polymeric structure was monitored by Quartz Crystal Microbalance with Dissipation (QCM-D). The loosely bound and flexible nature of polyelectrolyte promoted larger IONPs deposited amount compared to the bare silica surface without a pre-adsorbed polyelectrolyte. Increasing the initial IONPs concentration (20 to 500 ppm) suppressed the polyelectrolyte layer, giving rise to a stiffer particles-polymeric structure. By increasing the solution ionic strength (0.1 to 100 mM) within critical coagulation concentration up to 50 mM NaCl (obtained by DLS and Derjaguin-Landau-Verwey-Overbeek theory), the particles-polymeric structure became more flexible, leading to the greater amount of deposited IONPs. The open shell structure of the nanocomposite was varied with different polyelectrolyte hierarchy, nature and architecture. From DLS, QCM-D, TEM and AFM (Atomic Force Microscope), it was observed that the deposition of greater amount of IONPs and pollutants molecules into polymeric network was attributed by: (1) the flexible structure conserved by the single layer rather than multilayers of polyelectrolyte, (2) the more extended structure constructed by higher molecular weight than the lower molecular weight of polyelectrolyte, and (3) the branched chain compared to linear chain of polyelectrolyte. Mean field and scaling approximations showed that the protruding side chains of branched PEI contributed to the thicker adsorbed layer (16.14 nm) with more ramified structure compared to linear PDDA (0.19 nm). By taking cationic Methylene Blue, anionic Methyl Orange dyes and Amoxicillin antibiotic as the model system, the performance of nanocomposite can be compared with the silica, silica-polyelectrolyte and bare IONPs. With the ability to facilitate Fenton and Fenton-like reaction with the presence of hydrogen peroxide, nanocomposite achieved highest pollutant removal efficiency among the synthesized nanoparticles. The easiness of magnetic recollection enabled nanocomposite to be recycled for subsequent pollutant removal runs. Nanocomposite retained high pollutant removal efficiency for total 5 recycled runs without significant dissolution of the IONPs from the nanocomposite. The pollutant removal process by nanocomposite can be well illustrated using Langmuir isotherm and pseudo-second-order kinetic model.
Contributor(s):
Hui Xin Che - Author
Primary Item Type:
Thesis
Identifiers:
Accession Number : 875008427
Language:
English
Subject Keywords:
electrophoretic; Derjaguin-Landau-Verwey; silica-polyelectrolyte
First presented to the public:
5/1/2017
Original Publication Date:
12/3/2019
Previously Published By:
Universiti Sains Malaysia
Place Of Publication:
School of Chemical Engineering
Citation:
Extents:
Number of Pages - 275
License Grantor / Date Granted:
  / ( View License )
Date Deposited
2019-12-03 15:53:43.161
Date Last Updated
2020-11-16 15:29:33.508
Submitter:
Mohamed Yunus Yusof

All Versions

Thumbnail Name Version Created Date
Synthesis of open-shell iron oxide-polyelectrolyte-silica nanocomposite for water treatment application / Che Hui Xin1 2019-12-03 15:53:43.161