(For USM Staff/Student Only)

EngLib USM > Ω School of Electrical & Electronic Engineering >

Modeling and simulation thin film titania for memory resistor (memristor)

Modeling and simulation thin film titania for memory resistor (memristor) / Foo Meng Kok
Secara umum, perintang, pemuat dan pengaruh merupakan unsur-unsur asasi litar yang sedia ada. Sehingga tahun 1971, Leon Chua, bapa teori litar tak lelurus dan rangkaian neural bersel, telah mengandaikan perintang memori sebagai unsur asasi litar yang keempat. Kebolehan unik perintang memori adalah perintang memori boleh mengingati nilai rintangannya walaupun kuasa dimatikan. Dengan ciri-ciri ini, perintang memori boleh dibangunkan untuk menjadi generasi baru ingatan tak meruap. Untuk mengatasi masalah kehilangan ingatan komputer apabila kuasa dimatikan sebelum menyimpan kerja, maka ciri-ciri perintang memori perlulah dianalisis untuk melaksanakan perintang memori secara praktik dalam industri memori pada masa akan datang. Tujuan projek ini adalah untuk mengkaji dan mentafsir sifat perintang memori dan analisis matematik asasi perintang memori. Mengikut definisi, perintang memori mengaitkan caj q dan fluks magnet y dalam litar, dan melengkapkan perintang R, pemuat C, dan pengaruh L sebagai unsur litar elektrik yang unggul. Projek ini memberi tumpuan kepada analisis matematik dan penyelakuan untuk model perintang memori. Model perintang memori hanyut lelurus digunakan untuk menjalankan analisis matematik. Selepas penerbitan perintang memori dilakukan secara beranalisis, penerbitan matematik tersebut akan digunakan untuk melaksanakan penyelakuan dengan MATLAB. Lengkung caj-fluks (q -y), lengkung arus-voltan (i-v) dan kesan perubahan frekuensi ω dalam ciri-ciri - diselaku dan dianalisis. Selepas peringkat ini, ciri-ciri perintang memori daripada keputusan penyelakuan boleh dibandingkan dengan ciri-ciri perintang memori daripada teori. Lengkung q-y perintang memori adalah lengkung berekanada meningkat. Manakala gelung histerisis digambarkan oleh ciri-ciri perintang memori i-v. Lebih rendah frekuensi voltan masukan yang dikenakan (ω =0.5rad / sec), lebih besar kesan histeritik ditunjukkan oleh ciri-ciri perintang memori i-v. Sebaliknya, apabila frekuensi voltan masukan yang dikenakan adalah tinggi (ω = 100rad / sec), graf i-v. perintang memori menunjukkan satu garis lurus lelurus dan bukannya gelung histerisis. Prestasi memristor boleh dipertingkatkan dengan meningkatkan panjang rantau terdop (w0 = 9nm ). Graf i-v perintang memori menggambarkan gelung histerisis pada frekuensi tinggi (ω = 100rad/sec) apabila panjang rantau terdop bertambah. Projek ini telah berjaya dijalankan kerana objektif-objektif projek ini telah dicapai. _______________________________________________________________________________________________________ In general, resistors, capacitors and influences are the basic elements of an existing circuit. Until 1971, Leon Chua, father of nonlinear circuit theory and cellular neural network, has assumed memory resistors as the fourth elementary element of the circuit. The unique ability of memory resistors is a memory resistor can remember the value of its resistance even if the power is off. With these features, memory resistors can be developed to become a new generation of non-volatile memory. To overcome the problem of losing computer memory when power is turned off before storing work, then memory resistor characteristics need to be analyzed to perform practical memory resistors in the memory industry in the future. The purpose of this project is to examine and interpret the nature of the memory resistors and the mathematical analysis of the memory resistor. By definition, the memory resistors relate the charge q and magnetic flux y in the circuit, and complement the resistor R, the C capacitor, and the influence of L as the element of superior electrical circuit. This project focuses on mathematical analysis and simulation for memory resistor models. A linear drift memory resistor model is used to perform mathematical analysis. After publishing a memory resistor is analyzed, the mathematical publication will be used to perform the simulation with MATLAB. The charge-flux curve (q -y), the voltage-current curve (i-v) and the effect of the frequency change ω in the characteristics - are held and analyzed. After this stage, the memory resistor characteristics of the simulation results can be compared with the memory resistance characteristics of the theory. The curve q-y of the memory resistor is the increased curve. The hysterical loops are described by the characteristics of memory resistors i-v. The lower the input voltage frequency (ω = 0.5rad / sec), the greater the hysterical effect shown by the i-v memory resistor characteristics. On the other hand, when the input voltage of the input voltage is high (ω = 100rad / sec), the graph i-v. The memory resistor shows a linear straight line instead of the hysterical loop. The performance of the memristor can be enhanced by increasing the length of the doped region (ω 0 = 9nm). The i-v memory resistor graph depicts the hysterical loop at high frequency (ω = 100rad / sec) when the doped region length increases. This project has been successful because the objectives of this project have been achieved.
Contributor(s):
Foo Meng Kok - Author
Primary Item Type:
Final Year Project
Identifiers:
Barcode : 00003096345
Accession Number : 875004724
Language:
English
Subject Keywords:
MATLAB; resistors; computer
First presented to the public:
6/1/2012
Original Publication Date:
3/15/2018
Previously Published By:
Universiti Sains Malaysia
Place Of Publication:
School of Electrical & Electronic Engineering
Citation:
Extents:
Number of Pages - 87
License Grantor / Date Granted:
  / ( View License )
Date Deposited
2018-03-15 16:26:44.406
Date Last Updated
2019-01-07 11:24:32.9118
Submitter:
Mohd Jasnizam Mohd Salleh

All Versions

Thumbnail Name Version Created Date
Modeling and simulation thin film titania for memory resistor (memristor)1 2018-03-15 16:26:44.406