(For USM Staff/Student Only)

EngLib USM > Ω School of Electrical & Electronic Engineering >

Automatic identification of bit rates and modulation formats in next-generation fiberoptic communication networks/ Kiu Shiu Guong

Automatic identification of bit rates and modulation formats in next-generation fiberoptic communication networks_Kiu Shiu Guong_E3_2013_NI
Adalah dijangkakan bahawa rangkaian optik pada masa hadapan akan merangkumi pelbagai jenis format kadar dan modulasi agak bersifat menyokong pelbagai perkhidmatan data bergantung kepada keperluan pengguna. Pemantauan prestasi optik (OPM) dijangka akan memainkan peranan penting dalam pengurusan rangkaian gentian optik yang heterogen dengan cekap. Walaupun kadar bit dan maklumat format modulasi boleh diperolehi daripada protocol-protocol lapison atas, tetapi tidak praktikal untuk berbuat demikian. Maklumat yang benar dan tepat mengenai kadar bit dan format modulasi membolehkan OPM menggunakan pemantauan yang sesuai bagi kadar bit dan jenis format modulasi pada nod rangkaian masing-masing. Tambahan pula, maklumat kadar bit dan format modulasi yang benar dan tepat juga membolehkan penerima menggunakan teknik demodulasi yang sesuai tanpa sebarang maklumat dari pemancar tentang jenis isyarat terlebih dahulu. Jaringan neural buatan klasifikasi asas adalah universal dan mempunyai fleksibiliti yang tinggi dan boleh digunakan dalam bidang telekomunikasi. Dalam projek ini, kami mencadangkan pengunnaan jaringan neural buatan dalam mengenalpasti kadar bit dan format modulasi dengan efisien dalam rangkaian gentian optic yang heterogen dalam masa depan. Jaringan neural buatan dilatih dengan ciri-ciri yang diekstrak daripada kelewatan tap plot. Keputusan daripada projeck ini menunjukkan jaringan neural mempunyai 99.9% ketepatan dalam mengenalpasti enam jenis kadar bit dan format modulasi dalam kehadiran pelbagai peringkat isyarat optic kepada nisbah bunyi, penyebaran kromatik dan polarisasi mod penyebaran. Oleh demikian, Jaringan neural buatan juga boleh membantu penerima isyarat mengenalpasti kadar bit dan format modulasi dengan berkesan dan tepat dalam masa depan. ___________________________________________________________________________________ It is envisaged that the future optical networks will encompass of different kinds of bit rate and modulation formats in nature in order to support a wide range of data services depending upon the end users’ demands. Optical performance monitoring (OPM) is expected to play an important role in the efficient management of heterogeneous fiber-optic networks. Although the bit rate and modulation format information can be obtained from the upper layer protocols in principle, it is not practical to do so. The real and accurate information about bit rate and modulation format can enable the OPM devices deployed at the network nodes to apply suitable monitoring techniques for that specific bit rate and modulation format type. Furthermore, the real-time information about the signals bit rate and modulation format can also aid the receivers for effective demodulation, without any a prior information from the transmitters about the signals types. Artificial neural networks based classifiers are universal and due to their high flexibility, they can also be used in the field of telecommunications. An artificial neural network that mimics the human brain’s extraordinary ability and able not only recognize patterns but also able to classify them. In this project, we propose efficient bit rate and modulation formats identification in next-generation heterogeneous fiber-optic networks using an artificial neural network trained with the features extracted from asynchronous delay tap plots. From the result, we can see that ANN demonstrates over 99.9% identification accuracy for six widely-used bit rate and modulation formats for OSNR values as low as 14 dB and also in the presence of impairments with various levels of chromatic dispersion and differential delay tap group. Hence ANN-based classifier can effectively enable the joint bit rate and modulation identification feature in future receivers as well as in OPM devices deployed throughout an optical network.
Contributor(s):
Kiu Shiu Guong - Author
Primary Item Type:
Final Year Project
Language:
English
Subject Keywords:
fiber-optic ; bit rate ; communication
First presented to the public:
6/1/2013
Original Publication Date:
2/12/2020
Previously Published By:
Universiti Sains Malaysia
Place Of Publication:
School of Electrical & Electronic Engineering
Citation:
Extents:
Number of Pages - 107
License Grantor / Date Granted:
  / ( View License )
Date Deposited
2020-02-13 11:42:07.137
Submitter:
Nor Hayati Ismail

All Versions

Thumbnail Name Version Created Date
Automatic identification of bit rates and modulation formats in next-generation fiberoptic communication networks/ Kiu Shiu Guong1 2020-02-13 11:42:07.137