Penjejakan objek adalah penyelidikan utama dalam bidang sains komputer. Kini adalah sukar untuk mengembangkan algoritma dan model penjejakan yang diinginkan dan efisien untuk penjejakan objek kerana setiap penjejak mempunyai atribut dan kelemahan yang dominan. Dasar-dasar algoritma evolusi, Evolusi Pembezaan (DE) diperkenalkan untuk mencari parameter optimal dengan dengan fungsi objektif yang tepat. Untuk melaksanakannya, penjejak kompressif cepat dipilih untuk disatukan dengan DE kerana ia terkenal sebagai penjejak masa nyata yang cepat dengan elemen teori penderiaan termampat. Penjejak kompresif cepat yang disatukan dengan evolusi pembezaan telah dicadangkan dalam usaha mengoptimumkan prestasi penjejakan objek. Pada dasarnya, anggap bahawa lokasi objek telah dikenal pasti pada awalnya, dan penjejakan dilakukan oleh penjejak yang dicadangkan. Ketika penjejakan tersekat, evolusi pembezaan dengan korelasi silang dinormalisasi sebagai fungsi objektif dilaksanakan. Lokasi penjejakan yang diperoleh pada tahap DE digunakan pada kerangka berikutnya sebagai kedudukan awal. Integrasi menghasilkan pengurangan kerumitan komputasi untuk prosedur pengesanan. Hasil eksperimen diperoleh daripada set data OTB100 standard untuk mengukur kemampuan penjejak yang dicadangkan. Rata-rata nisbah pertindihan dan kesalahan piksel algoritma penambahbaikan yang dicadangkan masing-masing meningkat kepada 0.51 dan 28.87. Oleh itu, model yang dicadangkan meningkatkan keupayaan untuk mengatasi masalah oklusi dan putaran luar pesawat berbanding dengan kaedah canggih yang lain.
_______________________________________________________________________________________________________
Object tracking is major research in the field of computer science. It is difficult to develop a desired, and efficient tracking algorithm and model for object tracking due to each tracker has its dominant attributes and weakness. In this work, an evolutionary computation method, differential evolution (DE) is being introduced to search the optimal parameters by iteratively solving and improve a solution with a proper objective function. To implement it, fast-compressive tracking is chosen to integrate with it as it is well-known for its rapid real-time tracking with the element of compressed sensing theory. A fast-compressive tracking integrated with differential evolution (FCTDE) being proposed, which has improved the object tracking performance. Assume that an object location was identified in the beginning, and the tracking is carried out by proposed tracker. When it was occluded, the differential evolution with normalized cross-correlation as objective function was implemented. The tracking location obtained in the differential evolution stage was utilized in the next frame as the initial position. The integration has resulted in a reduction of the computational complexity for the tracking procedure. The experimental results are recorded on the standard Online Tracking Benchmark (OTB100) data sets to represent the robustness of the proposed tracker. The average overlapping ratio and average centre location error (CLE) of proposed improvement algorithm improve to 0.51 and 28.87 respectively comparing its two predecessors fast compressive tracking (FCT) and fast compressive tracking parameters optimization (FCTop). Thus, the proposed model enhances the ability to tackle the occlusion and out-of-plane rotation problem.