Pengimejan urat belakang tangan semakin mendapat perhatian daripada pelbagai bidang yang berbeza kerana keunikannya. Ia adalah mustahil untuk memperoleh imej tangan yang tiada hingar. Oleh itu, para penyelidik meletakkan usaha yang banyak untuk mencadangkan algorithma-algoritma penapisan hingar untuk menapis hingar dalam imej tangan untuk proses selanjutnya. Walau bagaimanapun, masih tiada kajian khusus yang telah menjustifikasikan satu kaedah penapisan yang mampu melaksanakannya secara efektif ke atas imej urat belakang tangan. Oleh sebab itu, kerja-kerja kajian ini ditubuhkan untuk mengkaji pelbagai kaedah penapisan untuk imej urat belakang tangan. Pertama sekali, kajian ini memodelkan hingar-hingar untuk menghasilkan imej-imej hingar untuk esksperimen. Dua jenis hingar: hingar Salt-Pepper dan Gaussian dimodelkan sebagai hingar sebenar. Kemudian, algoritma penapisan hingar digunakan. Kaedah penapisan biasa dan penyesuaian telah dikaji dan diguna untuk menapis hingar dalam dua sampel imej tangan. Pemilihan kaedah penapisan adalah berdasarkan pencapaiannya yang dahulu. Sampel imej hingar yang berbeza dengan komposisi isyarat hingar yang berbeza digunakan untuk menguji prestasi kaedah penapisan berdasarkan penilaian kuantitatif dan kualiti visual. Kemudian, penilaian prestasi keadah-kaedah penapisan ke atas imej urat belakang tangan telah dibuat. Selepas itu, perbandingan dan perbezaan dilakukan berdasarkan prestasi kaedah penapisan pada kes-kes yang berbeza. Keputusan penilaian menunjukkan TVWF adalah teguh dalam menapis hingar Salt-Pepper mankala NLMF dan AMMTDF mempunyai prestasi yang terendah pada ketumpatan Salt-Pepper yang rendah dan tinggi masing-masing. TVWF mencapai MSSIM di 0.9919 manakala NLMF dan AMMTDF mencapai MSSIM di 0.8691 dan 0.9792 masing-masing pada 0.1 ketumpatan Salt-Pepper. TVWF mencapai MSSIM di 0.9275 manakala NLMF dan AMMTDF mencapai MSSIM di 0.8665 dan 0.0375 masing-masing pada 0.9 ketumpatan Salt-Pepper. Sebaliknya, BM3DF adalah lebih sedikit dalam penapisan hingar Gaussian. Ia mencapai MSSIM di 0.9696 dan 0.9605 pada 0.001 dan 0.005 varians Gaussian masing-masing. TVWF mempunyai prestasi yang terendah dalam penapisan hingar Gaussian. Ia mencapai MSSIM di 0.5326 dan 0.1891 untuk 0.001 dan 0.005 varians Gaussian masing masing. Selain itu, MSSIM menunjukkan keteguhannya dalam penilaian di antara parameter penilaian yang lain.
_______________________________________________________________________________________________________
Dorsal hand vein imaging is gaining attraction from different fields due to its uniqueness. It is impossible to acquire noiseless hand image. Hence, researchers put a lot of efforts to propose noise filtering algorithms to filter out noise in hand images for further processing. However, there is still no specific study which has justified a filtering method that can perform effectively on dorsal hand vein image. Therefore, this research works is set-up to study on various filtering methods for dorsal hand vein images. Firstly, this study models the noises to generate noisy images for experiments. Two types of noises: Salt-Pepper noise and Gaussian noise are modelled as the real-world noises. Then noise filtering algorithms are applied. Typical and adaptive noise filtering methods have been studied and applied to filter noise in two samples of hand images. The choices of filtering methods are based on its past achievements. Different samples of noisy images with different composition of noise signal are used to test the performance of filtering methods out based on the quantitative measure and visual quality. Then, evaluation on the performance of filtering methods on dorsal hand vein images is made. After that, comparison and contrast are made based on the performance of the filtering methods on different cases. The evaluation results showed that Three Value Weighted Filtering is robust on filtering Salt-Pepper noise while Non-Local Mean Filtering and Adaptive Measure of Medium Truth Degree Filtering have the lowest performance on low and high Salt-Pepper densities respectively. At 0.1 Salt-Pepper density, TVWF achieved MSSIM at 0.9919 while NLMF and AMMTDF achieved MSSIM at 0.8691 and 0.9792 respectively. At 0.9 Salt-Pepper density, TVWF achieved MSSIM at 0.9275 while NLMF and AMMTDF achieved MSSIM at 0.8665 and 0.0373 respectively. On the other hand, Block Matching with 3D Filtering is slightly ahead in filtering Gaussian noise, it achieved MSSIM at 0.9696 and 0.9605 at 0.001 and 0.005 Gaussian variances respectively. TVWF has the lowest performance on filtering Gaussian noise. It achieved MSSIM at 0.5326 and 0.1891 for 0.001 and 0.005 Gaussian variances respectively. Besides, MSSIM shows its robustness in evaluation among other evaluation parameters.