(For USM Staff/Student Only)

EngLib USM > Ω School of Aerospace Engineering >

Performance analysis of hydrokinetic turbine blade section using cfd

Performance analysis of hydrokinetic turbine blade section using cfd / Lim Han Wea
Kajian ini membincangkan analisis prestasi bahagian bilah hidrokinetik turbin menggunakan CFD. Tambahan pula, analisis ini akan fokus terhadap kajian kes tentang peronggaan yang berlaku sekitar bilah turbin. Peronggaan ialah fenomena yang membawa kerosakan kepada bilah turbin apabila rongga runtuh. Satu tambahan akan direka atas bilah turbin untuk mengurangkan kesan peronggaan terhadap bilah turbin. Objektif kajian ini adalah untuk mengkaji kesan ketebalan hidrofoil dan reka bentuk tambahan seperti saiz dan lokasinya terhadap prestasi bilah turbin dan peronggaan. Reka bentuk bilah turbin yang paling optimum akan ditentukan berdasarkan pencarian kajian ini. Kajian ini dianalisis menggunakan perisian CFD, ANSYS FLUENT. Analisis ini memberikan fokus kepada kajian kes dua dimensi, di mana hidrofoil yang bernama NACA 63-618 diggunakan untuk eksperimen ini berdasarkan tinjauan literatur yang telah dilakukan. Pengubahsuaian ketebalan hidrofoil dan rekan bentuk tambahan seperti saiz dan lokasi akan dilakukan dengan bantuan perisian CAD yang bernama Design Modular. Simulasi ini menggunakan hidrofoil dan tambahan yang telah diubahsuai. Simulasi ini menetapkan kelajuan cecair pada 6m/s. Selain itu, model peronggaan dan model gelora yang dipilih untuk melakukan simulasi keadaan peronggaan adalah model Scherr and Sauer dan model RNG k-ɛ. Data seperti pekali daya angkut, pekali seretan direkod untuk mengkaji prestasi bilah manakala kekerapan rongga terbentuk dan pecah diperhatikan untuk mengetahui kesan peronggaan. Daripada hasil carian ini, didapati hidrofoil yang nipis dan bentuk tambahan yang kecil membolehkan bilah turbin untuk berprestasi dengan lebih cekap, tetapi kesan peronggaannya bertambah buruk. Jika lokasi tambahan terlalu dekat dengan pinggir depan hidrofoil, ia akan menjejaskan prestasi bilah, namun ia dapat mengurangkan kesan peronggaan terhadap bilah turbin. Reka bentuk yang paling optimum bagi hidrofoil NACA 63-618 ialah hidrofoil dengan ketebalan 90%, tambahan dengan saiz sudut 6°, dan lokasi tambahan di 15% seluruh panjang perentas hidrofoil _______________________________________________________________________________________________________ This work discusses about the performance analysis of hydrokinetic turbine blade section. Additionally, this analysis focusses on the case study of cavitation around the blade section. Cavitation is phenomenon that brings damage to the turbine blade when the cavities collapse. Appendage is a design on the blade section to reduce the impact of cavitation on the blade. The objectives of this work are to study the effects of hydrofoil thickness and appendage design such as size and location, on the blade performance as well as the impact on the cavitation behavior. Optimal design of turbine blade and appendage is then suggested based on the finding. The analysis is done using Computational fluid dynamics (CFD) simulation software, ANSYS FLUENT. This study focusses on a 2-dimension case study of the blade section called hydrofoil, where hydrofoil named NACA 63-618 was selected as the hydrofoil to be examined based on the literature review done. Modification of hydrofoil thickness as well as appendage design such as its size and location were done using Computational Aided Design (CAD) software, Design Modular. Simulations on the modified hydrofoil and appendage design was done at fluid velocity 6 m/s, cavitation model of Scherr and Sauer model and turbulent model of RNG k-ɛ model, to simulate the cavitation phenomenon. Collection of lift and drag coefficient were done to investigate the blade section performance, while observation on the number of cycles of cavities form and collapse was done to examine the cyclic behavior of cavitation. From the finding, both thin hydrofoil thickness and small appendage size give a better performance for blade’s efficiency but the impact on cyclic behavior of cavitation is amplified. If the location of appendage is nearer to the leading edge, it reduces the performance of the blade, but it minimizes the cavities cyclic behavior. The optimal design for the NACA 63-618 to be installed in hydrokinetic turbine blade is hydrofoil with thickness of 90%, appendage size with angle 6°, and appendage location at 15% of the hydrofoil chord length.
Contributor(s):
Lim Han Wea - Author
Primary Item Type:
Final Year Project
Identifiers:
Accession Number : 875007945
Language:
English
Subject Keywords:
hydrokinetic; turbine; cavitation
First presented to the public:
8/1/2020
Original Publication Date:
10/6/2020
Previously Published By:
Universiti Sains Malaysia
Place Of Publication:
School of Aerospace Engineering
Citation:
Extents:
Number of Pages - 116
License Grantor / Date Granted:
  / ( View License )
Date Deposited
2020-10-06 14:35:13.679
Submitter:
Mohd Jasnizam Mohd Salleh

All Versions

Thumbnail Name Version Created Date
Performance analysis of hydrokinetic turbine blade section using cfd1 2020-10-06 14:35:13.679