Dalam reka bentuk MMIC terdapat dua jenis induktor yang biasa digunakan iaitu induktor spiral dan meander. Induktor meander menjadi keutamaan apabila galakan utama adalah untuk mengurangkan kerumitan fabrikasi. Hal ini demikian kerana ia hanya memerlukan satu tahap fabrikasi logam, yang mengurangkan kerumitan fabrikasi dan mengurangkan kehilangan arus pusaran. Kesan bagi perbezaan pada struktur bumi kepada s-parameter, faktor-Q dan induktans juga adalah satu kebimbangan. Reka bentuk sesatah-ke-meander telah dibina dan disimulasikan menggunakan CST untuk mengkaji prestasi induktor meander untuk struktur bumi yang berbeza ditransitkan bersama meander pada 2.4 GHz. Langkah pertama adalah membina struktur gelombang sesatah konvensional. Seterusnya, membina struktur sesatah-ke-meander. Langkah terakhir adalah untuk mereka-bentuk tiga struktur sesatah bumi yang berbeza. Satu kajian tentang variasi jarak antara bumi-ke-signal membuktikan bahawa 35 μm adalah jarak terbaik. Peratusan perbezaan ciri-ciri impedansnya adalah yang paling rendah, menjadikan pemadanan galangan lebih mudah. Analisa S11, S21, faktor-Q dan induktans telah dijalankan keatas induktor meander 0.7 nH yang di transitkan bersama empat struktur bumi berbeza, iaitu konvensional, kelengkung linear, bucu tajam, dan bucu tetangga. Struktur bumi konvensional membuktikan bahawa ia mempunyai nilai S11 tertinggi berbanding dengan struktur bumi yang lain. Hal ini adalah baik untuk mendapatkan lebih banyak isyarat yang ditransmitkan dalam sesuatu reka bentuk. Dari segi induktans dan faktor Q, kelengkung linear mempunyai nilai yang tertinggi. Kesimpulannya, struktur terbaik adalah kelengkung linear, kerana ia mempunyai faktor Q dan induktans yang tertinggi.
_______________________________________________________________________________________________________
In MMICs design there are two types of inductors that are commonly used which are spiral and meander inductors. Meander inductors become a priority when it is favourable to reduce the fabrication complexity. This is because it only requires one metal level of fabrication, which reduce the fabrication complexity and reduce eddy current losses. The effect of difference in ground structure to s-parameter, Q-factor and inductance are also a concern. The design of coplanar-to-meander transition was constructed and simulated using CST in order to study the performance of meander inductor for different ground structure transitioned meander at 2.4 GHz. The first step in the design is to construct the CPW conventional structure. Next, the design of CPW-transitioned meander inductor was done. The final step is to design another three different ground structure. A study on variation of ground-to-signal spacing proves that 35 μm is the best spacing. The percentage difference of the characteristics impedance is the lowest, making the impedance matching is much easier. The S11, S21, Q-factor and inductance analyses were performed on a 0.7 nH meander inductor transitioned with four different ground CPW which are the conventional, linear curvature, sharp edge and stepped edge. Conventional ground structure proves that it has the highest S11 compared to other ground structure. This is good in order to have more signal transmitted in a design. In terms of inductance and Q-factor, linear curvature has the highest value. As for the conclusion, the best structure is linear curvature, since it has the highest Q-factor and inductance value.