Potensi silikon kerintangan tinggi pampasan-Au sebagai substrat mikro gelombang disiasat memandangkan substrat semikonduktor kerintangan yang tinggi memainkan peranan yang penting dalam penurunan kehilangan dan keupayaan peranti MMIC berprestasi tinggi. Substrat kerintangan yang tinggi adalah penting untuk mengekalkan nisbah isyarat-kepada-hingar pada tahap yang boleh diterima dan menyediakan kecekapan penghantaran kuasa tinggi dalam permohonan mikro gelombang. Kerintangan tinggi pampasan-Au boleh digunakan sebagai substrat asas yang dapat dimasukkan ke dalam teknologi RF-MMIC seperti integrasi IPD, TSVs dan oksida dikebumikan. Integrasi IPD menjadi pertimbangan dalam kerja ini dan ‘meander’ dipilih sebagai peranti pasif kerana ciri satah dimiliki. Dalam kerja ini, tiga ‘meander’ dengan pelbagai segmen telah direka dan disimulasi dengan menggunakan substrat pampasan-Au kerintangan tinggi. Di samping itu, kearuhan bagi pengaruh ‘meander’ dikira dan pengiraan adalah berdasarkan Greenhouse 1974 dan Grover 1954. Berdasarkan keputusan simulasi, faktor Q bagi pengaruh ‘meander’ berkurangan apabila bilangan segmen panjangnya bertambah. Selain itu, faktor Q bertambah apabila penurunan kearuhan berlaku, yang bermakna perlunya keseimbangan antara faktor Q bagi pengaruh Meander dan nilai kearuhan.
_______________________________________________________________________________________________________
The potential of the Au-compensated high resistivity silicon as a microwave substrate was investigated as the high resistivity semiconductor substrates play a crucial role in low loss and high performance MMIC devices. High resistivity substrates are essential to keep the signal-to-noise ratio at acceptable levels and provide high power transmission efficiency in microwave application. The Au-compensated high resistivity can be used as a base substrate which able to be incorporated into the RF-MMIC technology such as integration of IPDs, TSVs and buried oxide. The integration of the IPD was the concern in this work and the meander inductor was chosen as the passive device due to its truly planar characteristic. In this work, three meander inductors with different number of segments of the greatest length was designed and simulated by using the Au-compensated high resistivity substrate. In addition, the inductance for the meander inductors was calculated and the calculation was based on Greenhouse 1974 and Grover 1954. Based on the simulation result, the Q factor of the meander inductor decreases as the number of segments of the greatest length increases. Besides, the Q factor of the meander inductor increases as its inductance decreases which means there is a trade-off between the Q factor of the meander inductor and its inductance value.