Konkrit baru digambarkan sebagai perhimpunan zarah komposit yang dibuat daripada butir keras sfera yang mewakili agregat kasar yang dikelilingi oleh lapisan sfera sepusat yang mewakili mortar. Konkrit sering dimodelkan sebagai bahan yang dipanggil Bingham. Oleh itu, tingkah laku rheologi konkrit baru dapat dijelaskan dengan baik oleh Model Bingham. Keadaan geser bahan Bingham dapat diwakili oleh dashpot, spring, dan fungsi slip. Dalam kajian ini, Discrete Element Method (DEM) digunakan untuk mensimulasikan tingkah laku konkrit baru. Discrete Element Method (DEM) membolehkan pemodelan gerakan (terjemahan dan putaran) zarah, termasuk interaksi antara zarah itu sendiri dan interaksi zarah dan dinding. Parameter boleh digunakan secara langsung dalam simulasi berangka dengan menggunakan Discrete Element Method (DEM). Untuk pengesahan, ramalan analisis dan berangka bentuk konkrit dalam ‘slump test’ dibandingkan. Simulasi dilakukan dengan empat kes dengan nilai ‘soft-shells yield stress’ 𝜏𝑜,𝑚 dan ‘soft-shells viscosity’ 𝜇𝑚. Keputusan simulasi aliran berangka untuk ASTM Abrams slump dibentangkan. Keputusan ini dibandingkan dengan keputusan percubaan untuk penentusahan dan mengesahkan kaedah berangka yang dicadangkan dan syarat sempadan yang dipilih.
_______________________________________________________________________________________________________
Fresh concrete is described as an assembly of composite particles made of spherical hard grains representing coarse aggregates surrounded by concentric spherical layers representing mortar. Concrete are most often modelled as so-called Bingham materials. Hence, a rheological behaviour of fresh concrete can be described reasonably well by Bingham Model. The shearing behaviour of a Bingham material can be represented by a dashpot, a spring, and a slip function. In this study, Discrete Element Method is used to simulate the behaviour of fresh concrete. Discrete Element Method (DEM) enables the modelling of the movement (translation and rotation) of particles, including their interactions between the particle itself and the interaction of particle and wall. The parameters can be used directly in numerical simulations by means of the Discrete Element Method (DEM). For the sake of validation, the analytical and numerical predictions of the final shape of the concrete in the slump-flow test are compared. The simulation is performed with four cases with different value of soft-shells yield stress 𝜏𝑜,𝑚 and soft-shells viscosity 𝜇𝑚. Results of numerical flow simulations for ASTM Abrams cone slump are presented. These results are compared to experimental results in in order to verify and validate the proposed numerical method and the chosen boundary conditions.