(For USM Staff/Student Only)

EngLib USM > Ω School of Chemical Engineering >

Synthesis and thermal conductivity of copper nanoparticle encapsulated by graphene / Sebastian Dayou

Synthesis and thermal conductivity of copper nanoparticle encapsulated by graphene_Sebastian Dayou_K4_2017_MYMY
Kaedah mudah aplikasi pemendapan wap kimia (CVD) telah digunakan untuk mensintesis grafena yang dimangkin oleh kuprum yang disokong di atas MgO. Penggunaan komposit grafena-CuO-MgO (iaitu produk selepas proses CVD) sebagai bahan tambah untuk meningkatkan keberaliran haba dalam bahan penyimpan tenaga haba juga dikaji. CuO-MgO telah disediakan dengan memendap kuprum berzarah nano di atas permukaan serbuk MgO dengan menggunakan teknik impregnasi. Kajian melalui mikroskop pengimbas elektron digandingkan dengan teknik serakan tenaga sinar-X menunjukkan yang zarah-zarah kuprum berskala nano telah dimendapkan secara seragam di atas permukaan MgO. Pertumbuhan grafena dilakukan pada tekanan atmosfera di dalam sebuah reaktor unggun tetap yang mendatar tanpa adanya langkah penurunan yang khusus sebelum proses tindakbalas CVD; oleh yang demikian, zarah kuprum berada dalam keadaan oksida semasa proses pertumbuhan grafena berlaku. Mekanisme pertumbuhan grafena di atas kuprum oksida telah dikaji dengan teliti dengan menggunakan spektroskopi fotoelektron sinar-X dan pembelauan sinar-X. Buat pertama kalinya dibuktikan dengan jelas bahawa kuprum (5 mol.%) dalam bentuk oksida, secara efektif memangkin pertumbuhan grafena yang berlapis nipis apabila tindakbalas CVD dijalankan pada suhu 950 °C selama 60 min, 980 °C selama 30 min and 1000 °C selama 30 min di bawah aliran gas metana (50 mL/min), nitrogen (100 mL/min) dan hidrogen (100 mL/min). Mekansime pertumbuhan grafena diusulkan mengikut turutan berikut: (i) CuO mengalami proses penurunan oleh gas hidrogen yang mengakibatkan terbentuknya kekosongan kedudukan atom oksigen pada permukaan, (ii) penyah-hidrogenan terhadap metana pada kedudukan tersebut, dan (iii) seterusnya pembentukan jaringan grafitik yang menjadikan lapisan-lapisan grafena. Berdasarkan cara alternatif, terus dan tepat menerusi analisis termogravimetri, kandungan grafena yang tinggi berjaya dihasilkan (lingkungan 9.6 % dalam peratusan jisim) apabila tindakbalas CVD dijalankan pada suhu 1000 °C selama 30 minit. Berbanding dengan kaedah lain yang sedia ada, kaedah mensintesis grafena yang digunakan di dalam kajian ini adalah lebih cekap (125 % dalam peratusan jisim terhadap pemangkin) dan memberikan kadar pertumbuhan grafena yang tinggi (42 mg/ min/ g pemangkin) serta dihasilkan pada kos yang lebih rendah disebabkan oleh penggunaan bahan mentah yang lebih murah. Bahan yang dihasilkan selepas CVD (iaitu grafena beserta CuO-MgO) berpotensi tinggi untuk digunakan dalam aplikasi penyimpanan tenaga haba kerana ia dijangka boleh meningkatkan mutu kebolehaliran haba dengan wujudnya rangkaian terus sesama juzuk-juzuk unsur (iaitu antara grafena, CuO dan MgO) bagi saluran pengaliran haba. Berdasarkan data kajian yang diperolehi daripada kaedah sumber alihan tarahan, bahan in memberikan 51% peningkatan terhadap keberaliran haba terhadap bahan penyimpan haba. __________________________________________________________________________________ A facile chemical vapor deposition (CVD) method was used to synthesize graphene, which was catalyzed by copper supported on MgO. The use of graphene-CuO-MgO composite (i.e. the product after CVD) as additive for thermal conductivity enhancement in thermal energy storage material was also investigated. CuO-MgO was prepared by depositing 5 mol. % of copper nanoparticle on MgO powder using an impregnation technique. Investigation under scanning electron microscope coupled with energy dispersive X-ray spectrometry revealed that the copper nanoparticles were evenly deposited on the surface of MgO powders. The CVD process was carried out at atmospheric pressure in a horizontal fixed bed reactor without a dedicated reduction step prior to CVD reaction process; hence copper nanoparticle was in its oxidized state during the growth process of graphene. The mechanism by which graphene grows on copper oxide was deeply investigated by X-ray photoelectron spectroscopy and X-ray diffraction. For the first time, it was unambiguously proven that copper oxide (5 mol.%) efficiently catalyze the growth of few- and multi-layered graphene when the CVD reaction was conducted at 950 °C for 60 min, 980 °C for 30 min and 1000 °C for 30 min under the flow of methane (50 mL/min), nitrogen (100 mL/min) and hydrogen (100 mL/min). The mechanism of graphene growth was proposed in the following order: (i) reduction process of CuO by hydrogen that creates oxygen vacancies on the surface, (ii) methane dehydrogenation on the oxygen vacancy site and (iii) subsequent construction of graphitic network forming graphene layers. Based on the result from an alternative, direct and accurate approach of thermogravimetric analyses, high content of graphene was able to be produced (around 9.6 wt. %) when the CVD reaction was conducted at 1000°C for 30 min. Compared to the existing methods, this corresponds to a high efficiency (125 wt.%) and growth rate of graphene (42 mg/ min/ g of catalyst), produced at a considerably lower cost since cheaper raw materials were utilized. The as-produced material after CVD (i.e. graphene together with CuO-MgO) has high potential to be used in thermal energy storage applications due to the expected high thermal conductivity enhancement it could offer from the establishment of direct contact between the constituents, i.e. graphene, CuO and MgO, forming an interconnected network for heat conduction pathway. Based on the thermal investigation using a transient plane source method, 51% enhancement to the thermal conductivity of the thermal storage material was recorded.
Contributor(s):
Sebastian Dayou - Author
Primary Item Type:
Thesis
Identifiers:
Accession Number : 875008426
Language:
English
Subject Keywords:
CuO-MgO; spectrometry; photoelectron
First presented to the public:
7/1/2017
Original Publication Date:
12/3/2019
Previously Published By:
Universiti Sains Malaysia
Place Of Publication:
School of Chemical Engineering
Citation:
Extents:
Number of Pages - 154
License Grantor / Date Granted:
  / ( View License )
Date Deposited
2019-12-03 16:36:50.717
Date Last Updated
2020-11-16 15:23:39.996
Submitter:
Mohamed Yunus Yusof

All Versions

Thumbnail Name Version Created Date
Synthesis and thermal conductivity of copper nanoparticle encapsulated by graphene / Sebastian Dayou1 2019-12-03 16:36:50.717