Penjana pengagihan ialah loji janakuasa tambahan yang merujuk kepada penjana kuasa elektrik berskala kecil. Permintaan tenaga elektrik semakin tinggi di industri. Penggunaan elektrik juga meningkat di kawasan bandar dan luar bandar. Pemasangan dan saiz yang optimum bagi penjana pengagihan dalam rangkaian sistem kuasa menjadi mencabar untuk utiliti dan juga pelanggan. Projek ini akan menggunakan kaedah untuk menguji pada beberapa kes tanpa dipasang generasi diedarkan dan dengan pemasangan diedar yang dipasang. Untuk aliran beban, kaedah Newton Raphson digunakan untuk mengira kehilangan kuasa dan magnitud voltan. Kajian projek ini melibatkan sistem ujian bas IEEE 14 dan sistem ujian bas IEEE 30 dengan menggunakan perisian MATLAB. Penjana penagihan 50MW disuntik ke lokasi terbaik untuk kedua-dua kes. Keputusan menunjukkan bahawa bilangan pengoptimuman saiz dan penempatan generasi dioptimumkan dalam rangkaian sistem kuasa. Sistem ujian bas IEEE 14 menunjukkan peningkatan voltan selepas memasang penjana penagihan. Data aktual ialah 0.041pu, peningkatan beban 20% adalah 0.043pu dan peningkatan beban 40% adalah 0.044pu. Sistem ujian bas IEEE 30 juga menunjukkan peningkatan profil voltan dan penurunan dalam kehilangan kuasa. Keputusan untuk sistem ujian bas IEEE 30 untuk data aktual adalah 0.0941pu, peningkatan beban sebesar 20% adalah 0.1008pu dan beban meningkat sebesar 40% adalah 0.1085pu. Selepas memasang penjana pengagihan ke dalam sistem pengedaran, kehilangan kuasa sistem akan berkurangan dan profil voltan diperbaiki.
_______________________________________________________________________________________________________
Distributed generation is an additional power plant which refers to small scale electric power generator. The demand of electricity becomes higher at industries. The usage of electric energy also increases in town and rural area. The optimum installation and sizing of distributed generation in power system network become challenging for utilities as well as customers. This project will use numerical analytical method to install distributed generation. There are several cases that have been tested without distributed generation installed and with distributed generation installed. For load flow, Newton Raphson method is used to calculate the power losses and voltage magnitude. The case studies that involve in this project are IEEE 14 – bus test system and IEEE 30 – bus test system using MATLAB software. A 50 MW of distributed generation is injects to the best location for the both cases. The results show that the most optimized number of distributed generation, sizing and placement in the power system network. IEEE 14 bus test system shows improved voltage after installing distributed generation for actual case is 0.041pu, increasing load by 20% is 0.043pu and increasing load by 40% is 0.044pu. IEEE 30 bus test system also shows improved in voltage profile and decreases in power losses. The results for IEEE 30 bus test system are for actual data is 0.0941pu, increasing load by 20% is 0.1008pu and increasing load by 40% is 0.1085pu. After installing the distributed generation into power network system, the power losses of the system will decrease and voltage profile is improved.