(For USM Staff/Student Only)

EngLib USM > Ω School of Aerospace Engineering >

The developments of proportional-double derivative-linear quadratic regulator controller for attitude and altitude motions of a quadcopter

The developments of proportional-double derivative-linear quadratic regulator controller for attitude and altitude motions of a quadcopter / Mohamad Norherman Shauqie Mohamed Raihan
Kenderaan Pengangkut Tanpa Pemandu (UAV), dalam kes ini, sebuah quadcopter, adalah sebuah UAV berskala kecil yang telah banyak digunakan pada tahun-tahun kebelakangan ini kerana ia mampu melaksanakan pelbagai aplikasi sama ada dalam aplikasi tentera atau awam seperti pemantauan alam sekitar, pengawasan, dan pemeriksaan. Untuk menjamin prestasi quadcopter yang tinggi dalam pelbagai aplikasi misi, ia memerlukan sistem perkakasan dan kawalan yang boleh dipercayai. Oleh itu, adalah penting untuk membangunkan algoritma kawalan yang berkesan untuk pengawal untuk prestasi dan penggunaan quadcopter. Dalam tesis ini, kajian terhadap kawalan sikap dan penstabilan quadcopter melalui simulasi dalam perisian Matlab/Simulink telah dilakukan. Pertama, beberapa pengawal, Terbitan Integral Berkadar (PID), Terbitan Berkadar (PD), Pengatur Kuadratik Linier (LQR), Pengatur Kuadratik Linear Berkadar (P-LQR) dan Pengatur Kuadratik Linear Terbitan Berkadar (PD-LQR) telah dipilih untuk diteliti dan dianalisis. Selepas itu, dari analisis yang diperolehi satu lagi pengawal telah dicadangkan untuk meningkatkan prestasi kawalan quadcopter. Ditemukan dengan menambahkan satu lagi keuntungan Terbitan (D) dalam sistem kawalan PD-LQR, prestasi dapat ditingkatkan lagi. Oleh itu, Pengatur Kuadratik Linier Dua Terbitan Berkadar (PD2-LQR) telah direka dan dibangunkan. Model matematik quadcopter menggunakan pendekatan Newton-Euler diterapkan pada sistem pengawal menerangi gerakan sikap dan ketinggian quadcopter. Hasil simulasi pengawal PD2-LQR yang dicadangkan dibandingkan dengan pengawal PD, PID, LQR, P-LQR, PD-LQR. Kajian perbandingan plot tindak balas menunjukkan bahawa pengendali PD2-LQR yang dicadangkan dapat meningkatkan prestasi sistem kawalan dalam hampir semua respon. Dalam gerakan pitch, pengawal PD2-LQR boleh mengurangkan masa kenaikan sehingga 82.9% secara purata berbanding dengan pengawal lain, masa penyelesaiannya berkurang sebanyak 86.58% secara purata, penyingkiran terlebih tembakan meningkat dengan purata 39.16%, kesilapan keadaan mantap berkurang sebanyak 39.2% secara purata, dan RMSE berkurang sebanyak 28.32% secara purata. Dalam gerakan roll, peningkatan masa berkurang sebanyak 63% secara purata, masa penyelesaian berkurang sebanyak 65.5% secara purata, penambahbaikan terlebih tembakan sebanyak 57.7% secara purata, kesilapan keadaan mantap berkurang sebanyak 32.82% secara purata, dan RMSE berkurang sebanyak 29.4% secara purata. Dalam gerakan yaw, peningkatan masa berkurang dengan 41.8% secara purata, masa penyelesaian berkurang sebanyak 41.5% secara purata, penambahbaikan terlebih tembakan sebanyak 34.3% secara purata, pengurangan kesilapan keadaan mantap dalam gerakan yaw adalah sangat kecil ia boleh disamakan dengan sifar , dan RMSE berkurang sebanyak 19.4% secara purata. Dalam gerakan ketinggian, peningkatan masa berkurang sebanyak 31.7% secara purata, masa penyelesaian berkurang sebanyak 52.7% secara purata, penambahbaikan terlebih tembakan sebanyak 75.7% secara purata, pengurangan kesilapan keadaan mantap meningkat sebanyak 38.3% secara purata dan RMSE berkurang sebanyak 10.2% secara purata. Oleh itu, pengawal PD2-LQR yang dicadangkan paling sesuai untuk quadcopter model di semua empat gerakan, pitch, roll, yaw, dan ketinggian. _______________________________________________________________________________________________________ Unmanned Aerial Vehicle (UAV), in this case, a quadcopter, is a small-scale UAV that has been widely used in the recent years due to its capability to perform a various application either in the military or civilian application such as environment monitoring, surveillance, and inspection. In order to guarantee a high performance of the quadcopter in the various mission applications, it needs reliable hardware and control systems. Therefore, it is important to developing an effective control algorithm for the controller for the performance and application of the quadcopter. In this thesis, studies of the attitude control and stabilization of the quadcopter through a simulation in Matlab/Simulink software has been done. First, several controllers, Proportional-Integral-Derivative (PID), Proportional-Derivative (PD), Linear Quadratic Regulator (LQR), Proportional-Linear Quadratic Regulator (P-LQR), and Proportional-Derivative-Linear Quadratic Regulator (PD-LQR) controller have been chosen to be studied and analyzed. After that, from the analysis obtained another controller was proposed to improve the performance of the quadcopter control. It is found that by adding another Derivative gain in the PD-LQR control system, the performance can be improved further. Thus, a Proportional-Double Derivative-Linear Quadratic Regulator (PD2-LQR) controller has been designed and developed. The mathematical model of the quadcopter using the Newton-Euler approach is applied to the controller system illuminate the attitude and altitude motions of the quadcopter. The simulation results of the proposed PD2-LQR controller have been compared with the PD, PID, LQR, P-LQR, PD-LQR controller. The comparative study of the response plots reveals that the proposed PD2-LQR controller significantly improves the performance of the control system in almost all responses. In pitch motion, the PD2-LQR controller can improve the rise time up to 82.9% in average compared to other controllers, settling time improved by 86.58% in average, overshoot improved by 39.16% in average, steady-state error improved by 39.2% in average, and RMSE improved by 28.32% in average. In roll motion, rise time improved by 63% in average, settling time improved by 65.5% in average, overshoot improved by 57.7% in average, steady-state error improved by 32.82% in average, and RMSE improved by 29.4% in average. In yaw motion, rise time improved by 41.8% in average, settling time improved by 41.5% in average, overshoot improved by 34.3% in average, the improvement of steady-state error in yaw motion is very small it can be approximately equal to zero, and RMSE improved by 19.4% in average. In altitude motion, rise time improved by 31.7% in average, settling time improved by 52.7% in average, overshoot improved by 75.7% in average, and RMSE improved by 10.2% in average. Therefore, the proposed PD2-LQR controller is best-suited for the modelled quadcopter in all four motions, pitch, roll, yaw, and altitude.
Contributor(s):
Mohamad Norherman Shauqie Mohamed Raihan - Author
Primary Item Type:
Final Year Project
Identifiers:
Accession Number :  875008191
Language:
English
Subject Keywords:
(UAV); quadcopter; monitoring
First presented to the public:
6/1/2019
Original Publication Date:
7/9/2019
Previously Published By:
Universiti Sains Malaysia
Place Of Publication:
School of Aerospace Engineering
Citation:
Extents:
Number of Pages - 71
License Grantor / Date Granted:
  / ( View License )
Date Deposited
2019-07-11 12:56:34.207
Date Last Updated
2019-07-11 13:01:13.883
Submitter:
Mohd Jasnizam Mohd Salleh

All Versions

Thumbnail Name Version Created Date
The developments of proportional-double derivative-linear quadratic regulator controller for attitude and altitude motions of a quadcopter1 2019-07-11 12:56:34.207