Di Malaysia, keadaan jalan raya semakin bercabar terutamanya di kawasan bandar seperti Pulau Pinang. Terdapat lebih banyak kenderaan yang berdaftar di atas jalan raya dan lebih banyak konflik antara kenderaan berlaku. Oleh itu, terdapat jawatankuasa memantau keadaan lalu lintas dan analisis untuk perancangan jalan masa depan melalui kamera litar tertutup (CCTV) jalan raya. Sistem pemantauan seperti tersebut memerlukan banyak ketumpuan dan waktu kerja yang panjang, kesilapan manusia untuk memantau sistem adalah tinggi. Oleh itu, sistem pengawasan trafik asas penglihatan digunakan untuk membantu jawatankuasa untuk memproses bingkai video input dari CCTV kepada data yang lebih bermakna. Kajian ini bertujuan adalah untuk membina sistem pengawasan trafik berasaskan DNN yang sesuai untuk keadaan jalan raya di Pulau Pinang. Sistem pengawasan trafik ini termasuk algoritma pengesanan kenderaan dengan menggunakan DNN dan pelacakan kenderaan. Peringkat pertama adalah algoritma pengesanan kenderaan. Tiga eksperimen telah dilakukan iaitu YOLOv2 dengan dataset COCO pretrain, YOLOv3 dengan dataset COCO pretrain dan YOLOv3 yang dilatih dengan dataset sendiri. Dataset tersebut menggabungkan dataset penyetempatan MIO-TCD dan motorbike daripada dataset kenderaan Nepal. Keputusan YOLOv2 dengan dataset COCO pretrain kurang baik dengan ketepatan trak dan motosikal yang 0.00%. Keputusan YOLOv3 dengan dataset COCO pretrain agar baik dengan kelas kereta dan bas yang mempunyai 72.97% dan 92.00% ketepatan. Tetapi, ketepatan trak dan motosikal hanya 46,23% dan 40,37%. Pada masa yang sama, YOLOv3 dengan dataset COCO pretrain dapat mengesan kenderaan kecil yang tidak dapat dikesan dengan model YOLOv2. Bagi YOLOv3 yang dilatih dengan dataset sendiri, kelas Motorbike tidak dapat dikesan kerana jumlah gambar motosikal terlalu kurang untuk latihan. Prestasi keseluruhan kelas-kelas lain adalah baik yang ketepatan kelas kereta, trak dan bas adalah 92.05%, 64.71% dan 70.77%. Model tersebut tiada masalah sama yang dihadapi dengan YOLOv3 dengan dataset COCO pretrain. Untuk algoritma pengesanan kenderaan, jarak Euclidean digunakan untuk identiti kenderaan yang sama dalam bingkai video dengan dua parameter penting iaitu identiti kehilangan parameter and jarak untuk menganggap centroids parameter.
_______________________________________________________________________________________________________
In Malaysia, road condition is getting more challenging especially in an urban area like Penang. There are more registered vehicles on the road and more traffic conflict happened. Traffic managers are required to monitor the traffic condition and analyse it for future road planning via road closed-circuit television (CCTV) camera. This monitoring system requires a lot of concentration and long working hours. Thus, human error is high. Hence, vision-based traffic surveillance system is used to assist traffic manager to process the input video frame from CCTVs to more meaningful data. This research’s aim is to build a deep neural network-based traffic surveillance system which is suitable for Penang traffic road condition. The proposed traffic surveillance system includes a vehicle detection algorithm by using DNN and vehicle tracking with a tracking-by-detection algorithm. The first stage is the vehicle detection algorithm. Three experiments have conducted which are YOLOv2 with pretrain COCO dataset, YOLOv3 with pretrain COCO dataset and YOLOv3 trained with custom dataset. The custom dataset combined MIO-TCD localization dataset and motorbike of Nepal vehicle detection dataset. YOLOv2 with pretrain COCO dataset performs poorly with input video frame which precision of truck and motorbike are 0.00%. YOLOv3 with pretrain COCO datasets perform well with car and bus class which have 72.97% and 92.00% of precision. However, the precision of truck and motorbike is just 46.23% and 40.37% respectively. At the same time, YOLOv3 with pretrain COCO dataset can detect small vehicles that cannot be detected with YOLOv2 model. For YOLOv3 that is trained with custom dataset, Motorbike class cannot be detected as the number of motorbike images is insufficient for training. Overall performance of other classes is good which precision of car, truck, and bus class are 92.05%, 64.71% and 70.77% respectively. From field test observation, the trained model does not have the problem that is faced with YOLOv3 with pretrain COCO dataset. For vehicle tracking algorithm, Euclidean distance is used to identify the same vehicle in the video frame with two important parameters which are assigned identity disappear parameter after number of frames and distance parameter to assume centroids of current frame and previous frame as the same identity.