Gagap merupakan sejenis ganguan ucapan yang menjejaskan lebih kurang 1% daripada populasi manusia menurut Persatuan Tuturan-Bahasa-Pendengaran Amerika. Impak kegagapan ke atas penggagap amat besar dalam aspek sosial, emosi dan juga mental. Penilaian terhadap kegagapan biasanya dijalankan oleh pakar terapi pertuturan secara manual dengan pengiraan dan pengklasifikasian kegagapan dalam ucapan. Kelemahan dalam cara penilaian ini adalah, memakan masa yang panjang dan berkemungkinan berlakunya ketidaksetujuan antara satu pakar dengan pakar yang lain. Justeru, objektif kajian ini ialah membina pengkelas dengan mengklasifikasikan perkataan mengikut tahap kefasihan, pemanjangan and pengulangan dalam ucapan untuk membantu dalam proses penilaian kegagapan. Sampel ucapan daripada arkib ucapan penggagap Kolej Universiti London atau UCLASS digunakan dalam pengajian ini. Sampel-sampel tersebut disegmen kepada perkataan secara manual. Selepas itu, ciri-ciri perkataan diekstrak dengan kaedah pengekstrakan Ciri-ciri Cepstral Ramalan Lelurus atau LPCC. Rangkaian perceptron berlapis atau MLP dilatih dengan ciri-ciri tersebut untuk mengklasifikasikan jenis kegagapan. Rangkaian MLP terbaik yang telah dilatih mencapai ketepatan keseluruhan setinggi 90.6%. Kadar pengiktirafan untuk perkataan fasih, pemanjangan dan pengulangan mencatat ketepatan setinggi 88.4%, 83.8% and 96.9%.
_______________________________________________________________________________________________________
Stuttering is a speech disorder disrupting the fluency of speech with around 1% of human population affected by it according to American Speech-Language-Hearing Association. The impact of stuttering on a person is huge in social functioning, emotional functioning and even mental health aspect. The conventional stuttering assessment is conducted by counting and categorizing instances of dysfluencies in a speech, manually by speech-language pathologist. The disadvantages of this practice are time consuming and possible poor agreement among speech-language pathologist. Thus, the objective of this study is to develop classifiers in order to help in stuttering assessment by classifying words into categories of fluent, prolongation and repetition. Speech samples from University College London Archive of Stuttering Speech (UCLASS) were used for this study. The samples were manually segmented into words followed by Linear Prediction Cepstral Coefficients (LPCC) extraction as the technique of feature extraction. Multilayer perceptron (MLP) was then trained by the features extracted to classify the dysfluencies. The best MLP networks train achieved overall classification accuracy of 90.6%. The recognition rates of fluent, prolongation and repetition words are 88.4%, 83.8% and 96.9% respectively.