(For USM Staff/Student Only)

EngLib USM > Ω School of Chemical Engineering >

Diffusion mechanism modeling on mesoporous tin dioxide (SnO2) as gas sensor

Diffusion mechanism modeling on mesoporous tin dioxide (SnO2) as gas sensor / Chew Jia Ying
Semikonduktor sensor gas berasaskan logam oksida telah digunakan secara meluas dan dikaji dalam pengesanan gas yang berbahaya kepada manusia dan alam sekitar. Dalam kajian ini, penyelidikan telah dilakukan pada mesoporous stanum dioksida sensor gas kerana kepekaan yang tinggi dan tindak balas yang pantas. Untuk meningkatkan prestasi penderiaan, model mekanisma resapan telah dibina untuk mengkaji kesan kepekatan etanol dan suhu operasi terhadap kepekaan sensor gas. Mekanisme penderiaan gas dikawal oleh penyebaran gas sasaran menerusi filem berliang oleh Knudsen resapan dan tindak balas penjerapan oksigen dengan mengikuti tindak balas kinetik tertib pertama. Dengan menyelesaikan persamaan di bawah keadaan mantap, satu ungkapan umum bagi penderiaan sensor (Ra/Rg) sebagai fungsi pemalar pra-eksponen, α0 and k0, tenaga pengaktifan jelas, Ea, pemalar gas universal, R, suhu, T, kepekatan, CAS, ketebalan filem, L, tenaga pengaktifan, Ek, jejari liang, r and berat molekul bagi sasaran gas, M telah diterbit. Berdasarkan keputusan yang diperoleh daripada eksperimen, sensor menunjukkan peningkatan kepekaan dengan peningkatan kepekatan etanol pada suhu 300oC. Dengan membandingkan hasil model dan keputusan eksperimen untuk variasi etanol terhadap kepekaan, R2 yang menunjukkan ketepatan data-data yang diperoleh muat dalam model statistik adalah 0.76. Ia menandakan data yang dikumpul dari eksperimen tidak mencapai ketepatan yang memuaskan dalam model ini. Pengubahsuaian untuk model telah dilakukan dengan memperkenalkan Thiele Modulus dan R2 berjaya dipertingkatkan ke 0.92. Selain itu, dengan memanipulasi suhu operasi, keputusan eksperimen menunjukkan graf kepekaan berbanding suhu yang berbentuk loceng. Walau bagaimanapun, setelah membandingkan hasil model dan keputusan eksperimen, ia menunjukkan bahawa hubungan antara kepekaan dengan variasi suhu operasi tidak dapat mencapai ketepatan yang memuaskan dalam model ini kerana R2 yang diperoleh adalah nilai negatif. Oleh itu, ia dapat diringkaskan bahawa model ini hanya sesuai untuk diaplikasikan dari segi variasi kepekatan etanol. Dengan menggunakan model ini, analisis kepekaan telah dilakukan berasaskan ketebalan filem, L dan jejari liang, r. Merujuk kepada keputusan yang diperoleh dari model, ia menunjukkan bahawa kepekaan meningkat apabila ketebakan filem menurun pada suhu operasi 300oC disebabkan interaksi antara gas sasaran dengan permukaan sensor yang semakin kuat. Dengan menukarkan jejari liang dalam model ini, kepekaan sensor gas meningkat dengan peningkatan jejari liang pada suhu yang tetap, iaitu 300oC dan ia dapat dijelaskan dengan menggunakan persamaan Knudsen pekali resapan, Dk. _______________________________________________________________________________________________________ Semiconductor gas sensors based on metal oxide have been widely used and investigated in the detection of trace amount of hazardous gases which are harmful to human beings and environment. In the present study, research had been done on mesoporous tin dioxide gas sensor due to its high sensitivity and fast response. For improvement of gas sensing performance, a diffusion mechanism model was developed to study the effect of ethanol concentration and operating temperature on sensitivity of gas sensor. The gas sensing mechanism was governed by diffusion of target gas through the porous film by Knudsen diffusion and its reaction with the adsorbed oxygen by following a first-order reaction kinetic. By solving the equation under steady-state condition, a general expression of sensitivity (Ra/Rg) as a function of pre-exponential constants, α0 and k0, apparent activation energy, Ea, universal gas constant, R, temperature, T, concentration, CAS, film thickness, L, activation energy, Ek, pore radius, r and molecular weight of target gas, M was derived. Based on the result obtained from experiment, it is noticed that the sensor showed an increasing trend of sensitivity with the increasing of ethanol concentration at 300oC. By comparing the modeling result and experimental result for the variation of ethanol on sensitivity, R2 which indicates how well the data points fits a statistical model was 0.76. This signifies that the experimental data could not be satisfactory fit into the model created. A modification of the model was done by introducing Thiele Modulus and R2 was improved significantly to 0.92. Besides, by manipulating the operating temperature, the experimental result showed that the sensitivity versus temperature led to a bell-shaped graph. However, after comparing the modeling result with experimental result, it showed that the relationship between sensitivity and various operating temperature could not be fit into the model as R2 obtained was in negative value. Therefore, it can be summarized that the model is only suitable for the variation of ethanol concentration. By using the model, sensitivity analysis was done based on film thickness, L and pore radius, r. Based on the modeling result gained, it is shown that the sensitivity increased as the film thickness decreased at operating temperature of 300oC due to the stronger interaction between target gas and the surface of sensor. By changing the pore radius in the model, the sensitivity of gas sensor increased with increasing pore radius at fixed temperature of 300oC which can be well explained by the equation of Knudsen diffusion coefficient, Dk.
Contributor(s):
Chew Jia Ying - Author
Primary Item Type:
Final Year Project
Identifiers:
Accession Number : 875005387
Language:
English
Subject Keywords:
Semiconductor; gas; sensors
First presented to the public:
6/1/2014
Original Publication Date:
8/19/2020
Previously Published By:
Universiti Sains Malaysia
Place Of Publication:
School of Chemical Engineering
Citation:
Extents:
Number of Pages - 87
License Grantor / Date Granted:
  / ( View License )
Date Deposited
2020-08-19 10:24:21.795
Submitter:
Mohd Jasnizam Mohd Salleh

All Versions

Thumbnail Name Version Created Date
Diffusion mechanism modeling on mesoporous tin dioxide (SnO2) as gas sensor1 2020-08-19 10:24:21.795