(For USM Staff/Student Only)

EngLib USM > Ω School of Electrical & Electronic Engineering >

Anodization of titania nanotube arrays in electrolyte ontaining hydrogen peroxide / Lee Kar Chun

Anodization of titania nanotube arrays in electrolyte ontaining hydrogen peroxide_Lee Kar Chun_B1_2017_MYMY
Secara umum penganodan yang dijalankan dengan H2O2 sebagai sumber oksigen dapat mempercepatkan pertumbuhan tiub nano untuk aplikasi fotopemangkin. Namun, isu pengkaratan, mekanisma pembentukan lapisan oksigen padat dan tiub nano melalui penganodan dalam elektrolit yang mengandungi H2O2 masih tidak terjawab. Oleh itu, penganodan tiub nano (TNT) dijalankan dalam etilena glikol mengandungi H2O2 dikaji dan dibandingkan dengan tiud nano yang dianodkan dalam H2O supaya dapat memberi gambaran yang lebih jelas mengenai pembentukan tiub nano dan lapisan oksigen padat. Selain itu, kajian ini bermatlamat untuk menerokai sisa-sisa dalam elektrolit anod supaya spesies kimia Ti4+ yang terkandung dalam elektrolit dapat dikitar semula. Proses penganodan dwi-elektrod dijalankan dengan manyambungkan Ti dan Pt ke terminal positif dan negative selama 1 jam pada 60V. Etilena glikol, ammonium fluorida mengandungi spesies oksigen yang berlainan (H2O dan H2O2) digunakan sebagai elektrolit. Berdasarkan profil arus-masa, adalah disahkan bahawa kehadiran spesies •OOH dan OOH- dapat menggalakkan reaksi elektrokimia pada permukaan substrat. Kehadiran spesies Ti4+(H2O2) dalam elektrolit menaikan suhu elektrolit sehingga 55 °C dan mempromosikan aktiviti fluorida yang menyebabkan pengkaratan substrat. Dengan profil suhu yang sama, sampel dianod dalam H2O mengalami pengkaratan yang lebih teruk. Keputusan pemerhatian menepati jangkaan bahawa H2O2 dapat mengubah permukaan substrat dengan lebih berkesan. Penyiasatan terhadap asal-usul lapisan oksigen padat dibuat berdasarkan model ‘pembelahan tuib nano’ dan model ‘lapisan permulaan’. Pembentukan lapisan padat oksigen dapat digambarkan dengan jelas melalui model ‘lapisan permulaan’. Ini menunjukkan bahawa tuib nano tumbuh pada lapisan antara logam dan logam oksida. Eksperimen terhadap penganodan dalam konfigurasi satu sisi (SA) lawan dua sisi (DA) menunjukkan bahawa SA yang menghasilkan tiub nano berdinding tebal mampu mengeluarkan foto-arus yang lebih tinggi, 1.6 mA cm-2 pada 0 V. Berdasarkan pemerhatian perubahan morfologi, mekanisme pertumbuhan tiub nano berkait-rapat dengan lapisan padat oksigen. Oleh itu, pembentukan lapapisan padat oksigen mesti diambil kira ketika mencadang atau mereka model pembentukan tuid nano yang baru. Based on the morphology changes observed, formation mechanism of nanotube is greatly influenced by the compact oxide layer present above. Therefore, the compact oxide formation must be taken into consideration when devising nanotube growth model. Sisa elektrolit telah ditapis, dikeringkan sebelum dikarekterisasikan. Pemendakan yang terhasil daripada sisa elektrolit anod dikenal pasti sebagai (NH4)3TiOF5, mempunayi struktur oktahedron F(m3m) yang bersimetri tinggi. Process penyepuhlindapan pada 200 °C mencetus tindak balas dan menukarkan serbuk kuning, (NH4)3TiOF5 kepada (NH4)TiOF3 and (NH4)2TiF6. _______________________________________________________________________ It is well-accepted that anodization conducted in H2O2 as oxidant could facilitate rapid growth of nanotube for photocatalyst application. However, the corrosion behaviour, formation mechanism of compact oxide layer and nanotube associated with anodization in electrolyte containing H2O2 remains unanswered. Therefore, anodization of titania nanotube (TNT) in H2O2-based electrolyte are studied relative to H2O for better understanding on the formation of TNT nanotube as well as the formation of its surface oxide layer. Besides, the study aimed to explore the by product in anodic waste electrolyte for chemical recycling of Ti4+ species. Two-electrode anodization is conducted at 60 V for 1 hour by connecting the Ti and Pt foils to positive and negative terminal respectively using ethylene glycol, ammonium fluoride and different oxidants (H2O and H2O2) as electrolyte. Based on the current-time transient profiles, it is well-verified that the presence of •OOH and OOH- species facilitate stronger electrochemical reactions on substrate surface. It is found that presence of Ti4+(H2O2) species in the electrolyte raises the electrolyte temperature up to 55 °C, promoting the fluoride activity and leading to corrosion of substrate. Under similar temperature profile, sample anodized in H2O experiences a more severe corrosion. The observation fulfils the expectance where H2O2 species demonstrates a stronger passivation tendency. The investigation on the origin of compact oxide was made based on the nanotube-splitting model and initiation model. The formation of compact oxide layer can be more accurately described by initiation layer model. On this premise, it is suggested that nanotube is grown at the metalmetal oxide interface. Experimental works on single-sided (SA) vs double sided anodization (DA) configuration showed that SA produces a thick wall nanotube array which exhibits a much higher and stable photocurrent of 1.6 mA cm-2 at 0 V. Based on the morphology changes observed, formation mechanism of nanotube is greatly influenced by the compact oxide layer present above. Therefore, the compact oxide formation must be taken into consideration when devising nanotube growth model. Besides, the post-anodized electrolyte is filtered, dried and characterized. The byproduct extracted from waste anodic electrolyte was identified as (NH4)3TiOF5, with highly symmetrical F(m3m) octahedral structure. Annealing at 200 °C decomposes the yellowish powder, (NH4)3TiOF5 into (NH4)TiOF3 and (NH4)2TiF6.
Contributor(s):
Kar Chun Lee - Author
Primary Item Type:
Thesis
Identifiers:
Accession Number : 875008918
Language:
English
Subject Keywords:
anodization; ammonium; oxidants
Sponsor - Description:
Pusat Pengajian Kejuruteraan Bahan dan Sumber Mineral -
First presented to the public:
2/1/2018
Original Publication Date:
10/1/2020
Previously Published By:
Universiti Sains Malaysia
Place Of Publication:
School of Materials & Mineral Resources Engineering
Citation:
Extents:
Number of Pages - 286
License Grantor / Date Granted:
  / ( View License )
Date Deposited
2020-10-01 10:18:06.908
Submitter:
Mohamed Yunus Yusof

All Versions

Thumbnail Name Version Created Date
Anodization of titania nanotube arrays in electrolyte ontaining hydrogen peroxide / Lee Kar Chun1 2020-10-01 10:18:06.908