(For USM Staff/Student Only)

EngLib USM > Ω School of Electrical & Electronic Engineering >

Pembangunan kawalan suai dalam-talian untuk sistem kawalan kelajuan motor dalam matlab melalui basic stamp / Rozi Rifin

Pembangunan kawalan suai dalam-talian untuk sistem kawalan kelajuan motor dalam matlab melalui basic stamp_Rozi Rifin_E3_2005_NI
Projek ini mengaplikasikan kaedah pengawalan rangkaian neural perulangan setempat suap depan sejagat (Local Output Local Recurrent Globally Feedforward Neural Network) bagi kawalan aplikasi masa nyata iaitu kawalan kelajuan motor arus terus, AT. Struktur kawalan suai tanpa model dibangunkan dan rangkaian neural bertindak sebagai pengawal dalam sistem gelung tertutup untuk pengawalan sistem tidak linear melalui pendekatan skim kawalan suai tidak terus (indirect adaptive control). Pengawal rangkaian neural ini akan dilatih secara dalam talian dengan menggunakan algoritma pembelajaran ralat anggaran jadisemula (RPE) supaya keluaran loji dapat mengikuti kelakuan titik-titik set yang telah disetkan. Proses tangki reaktor pengacauan secara berterusan (Continuously Stirred Tank Reactor, CSTR) digunakan untuk membangunkan, memodelkan dan merekabentuk pengawal rangkaian neural secara simulasi bagi menentukan keluaran proses terbaik berdasarkan kepada saiz rangkaian, parameter-parameter pembelajaran dan sambungan rangkaian. Manakala sistem kawalan kelajuan motor AT akan diadaptasikan ke dalam model bagi menggantikan proses CSTR bagi melihat kelakuannya untuk aplikasi masa nyata sama ada boleh dilatih menggunakan rangkaian neural atau sebaliknya. Perisian MATLAB digunakan untuk pembangunan dan pemodelan proses bagi tujuan analisis dan rekabentuk serta sebagai media pengawalan untuk sistem kawalan kelajuan motor AT ini. _________________________________________________________________________________________ This project presents a Local Output Local Recurrent Globally Feedforward Neural Network (LOLRGF) for real time control implementation which is DC motor speed control. The on-line indirect adaptive control scheme is developed and neural network is used as compensator in the closed loop system to control nonlinear processes. The LOLRGF neural network was trained using Recursive Prediction Error (RPE) algorithm in order to output process follow the behavior of set point tracking beside to minimize an offset as small as possible. A continuously stirred tank reactor (CSTR) is used to develop, modeling and designing neural network compensator in simulation to determine the best output process according to network size, learning parameters and network connection. The DC motor speed control system will be adapted in the model to substitute CSTR process and observation regarding to output system behavior are implemented for real time application. In this investigation, MATLAB/SIMULINK software was used in control schemes development, modeling, analysis and design. This software also acts as controlling medium for DC motor speed control system which use Basic Stamp 2 as microcontroller.
Contributor(s):
Rozi Rifin - Author
Primary Item Type:
Final Year Project
Language:
English
Subject Keywords:
DC motor speed control ; loop system; Basic Stamp
First presented to the public:
3/1/2005
Original Publication Date:
8/13/2018
Previously Published By:
Universiti Sains Malaysia
Place Of Publication:
School of Electrical & Electronic Engineering
Citation:
Extents:
Number of Pages - 123
License Grantor / Date Granted:
  / ( View License )
Date Deposited
2018-08-13 16:09:02.462
Date Last Updated
2019-01-07 11:24:32.9118
Submitter:
Nor Hayati Ismail

All Versions

Thumbnail Name Version Created Date
Pembangunan kawalan suai dalam-talian untuk sistem kawalan kelajuan motor dalam matlab melalui basic stamp / Rozi Rifin1 2018-08-13 16:09:02.462