Sistem penuaian air hujan ialah teknik menadah air hujan untuk memenuhi keperluan air untuk penduduk di bandar mahu pun di luar bandar. Jumlah air hujan yang ditadah daripada sistem penuaian air hujan adalah berbeza di tempat yang berlainan bergantung pada keadaan cuaca. Lazimnya, sistem penuaian air hujan terdiri daripada bumbung rumah (tadahan), talang, paip, dan tangki simpanan. Dalam laporan projek tahun akhir ini, hasil keputusan dari tiga (3) tempat kajian kes , Kota Bharu, Johor Bahru, dan Ipoh untuk sistem penuaian air hujan di kawasan kediaman akan dipraktikkan dengan pelbagai kaedah. Keutuhan sistem penuaian air hujan adalah bergantung pada isipadu air hujan terkumpul dalam tangki simpanan dan juga dirujukkan untuk memastikan sama ada isipadu air hujan terkumpul mampu untuk memenuhi keperluan air untuk pengepaman tandas. Analisis simulasi telah diaplikasikan dengan menggunakan data-data hujan Kota
Bharu Kelantan. Berdasarkan keputusan daripada nilai-nilai keperluan air hujan berbeza (pengepaman tandas), keperluan air untuk 120 L/hari mencapai nilai keutuhan tertinggi iaitu 94.45% untuk saiz tangki 3m3. Keutuhan untuk keperluan air 160 L/ hari dan 240 L/hari adalah masing-masing 89.93% dan 81.32% dengan saiz tangki yang sama. Oleh itu, soal memenuhi keperluan air, ia mampu menyediakan penggunaan air yang tidak boleh diminum. Di Ipoh, Perak,teknik Monte Carlo telah digunakan untuk menganalisis prestasi sistem penuaian air hujan dengan kepelbagaian nisbah storan. Kadar kehilangan air menurun dengan drastik daripada 87% ke 29%, dan menurun beransur-ansur 1% ke 0.1 %. Di bandar raya seterusnya, Johor Bahru, Johor, analisis lengkung timbunan telah dianalisiskan. Graf kumulatif tuaian air hujan dan kumulatif keperluan air dihasilkan. Daripada graf, keperluan storan maksimum untuk sistem pengepaman tandas dikira. Pendekatan ini diguna untuk menentukan keupayaan sistem simpanan dikehendaki memenuhi 100% keperluan air. Pembatas utama analisis lengkung timbunan untuk keperluan air pengepamam tandas telah dibincangkan.
___________________________________________________________________________________
Rainwater harvesting system is the technique of capturing the rainfall to meet some water needs in both urban and rural areas. The volume of rainwater collected from rainwater harvesting system varies from place to place and depends mainly on the climate condition. Typically, the rainwater harvesting system is composed of the catchment (roof), gutter, rainwater pipe, and storage tank. In this thesis, the results from three (3) case studies area, Kota Bharu, Johor Bahru, Ipoh of rainwater harvesting systems as being practiced in residential area with different methods. Reliability of a rainwater harvesting systems mainly depend on the collected volume in rainwater storage tank and it is also used to check whether the collected volume of rainwater can meet a specific water demand for toilet flushing. The simulation analysis by “Tangki Nahrim” was applied using rainfall data of Kota Bharu, Kelantan. Based on the result for various rainwater demand in non potable use (toilet flushing), the water demand of 120 L/day achieved the highest reliability with 94.45% for the size of 3 m3 storage. The reliability of water demand for
160 L/day and 240 L/day was 89.93% and 81.32% respectively for similar tank size. Therefore, in term of meeting the water use, it can provide sufficient water for non-potable uses. At Ipoh, Perak, a Monte Carlo Technique has been generated to analyze the performance of the Rainwater Harvesting System with different ratio of storage fraction. The corresponding average water loss rate sharply decreased by 87% - 29%, and then gradually stabilized 1%-0.1%. At the other city, Johor Bahru, Johor, mass curve analysis was analyzed. Graph of cumulative harvested water and cumulative demand is produced. From the graph, the maximum storage requirement for toilet flushing system was calculated. The approach is used to determine the storage capacity required to meet 100% of the demand (Fewkes, 2006). The main limitation of the mass curve analysis for the toilet flushing demand was discussed.