(For USM Staff/Student Only)

EngLib USM > Ω School of Aerospace Engineering >

Fsi simulation of an aeroelastic system with aerodynamic nonlinearity

Fsi simulation of an aeroelastic system with aerodynamic nonlinearity / Muhamad Khairil Hafizi Mohd Zorkipli
Tesis ini membentangkan kajian sistem aeroelastik sebuah model NACA0012 rigid yang dipasang secara elastik dengan ketidaksamaan aerodinamik. Tingkah laku aeroelastik dari sayap dua dimensi berayun diperiksa dengan cara simulasi numerik. Simulasi NACA0012 dipelajari secara numerik melalui simulasi aeroelastic dua dimensi menggunakan ANSYS Fluent 16.1 untuk menilai tindak balas getaran aeroelastic pada paksi elastik yang berlainan dengan ketidaksamaan aerodinamik dan mendapati fenomena ketidaksamaan aerodinamik terhasil daripada pemisahan lapisan sempadan, pemisahan dan aliran lampiran semula di sekitar aerofoil. Simulasi menggunakan model RANS (SST) k-ω dengan pembetulan nombor Reynolds yang rendah untuk menangkap aliran fizikal di sekitar aerofoil. Interaksi struktur bendalir dinamik (FSI) dicapai melalui gabungan persamaan struktur gerakan dengan penyelesai bendalir dalaman melalui utiliti fungsi (UDF) yang ditentukan oleh Fluent. Simulasi numerik dijalankan pada tiga kedudukan paksi elastik (EA) yang berbeza, 0% (titik depan), 18.6% dan 35% dari titik depan. Simulasi dijalankan pada julat kelajuan angin dari 4 m/s hingga 14 m/s. Hasilnya menunjukkan dua amplitud ayunan yang berlainan daripada tindak balas dinamik yang dihasilkan oleh sistem aeroelastik, di EA dari 0% (titik depan) dan 18.6% menghasilkan ayunan amplitud kecil (SAO) sementara pada paksi elastik 35% menghasilkan ayunan besar amplitud (LAO). Pengesahan simulasi numerik menunjukkan kecenderungan yang sama dengan hasil eksperimen dan didapati menghasilkan amplitud had ayunan kitaran (LCO) yang boleh dibandingkan. Dari aspek aliran aerodinamik, pemisahan lapisan sempadan laminar didapati memainkan peranan penting untuk ayunan yang mengekalkan ayunan dalam ayunan amplitud kecil. Fenomena aliran pusaran, pemisahan aliran dan fenomena pengaliran lampiran semula dijumpai menyebabkan amplitud yang besar dan pusaran aliran yang terbalik di titik belakang aerofoil menyebabkan sayap bergerak dan mengekalkan kitaran ayunan. _______________________________________________________________________________________________________ This thesis presents a study of aeroelastic system of an elastically mounted rigid NACA0012 airfoil with aerodynamics nonlinearity. The aeroelastic behavior of a two dimensional wing oscillating is examined by means of numerical simulations. The simulation of NACA0012 is studied numerically through unsteady two-dimensional aeroelastic simulation using ANSYS Fluent 16.1 to evaluate the aeroelastic response of stall flutter at different elastic axis with aerodynamic nonlinearities and found that the aerodynamic nonlinearities are from boundary layer separation, the separation and reattachment of flow around the airfoil. The simulation employed RANS (SST) k-𝜔 model with low Reynolds number correction to capture the physical flow around the airfoil. The dynamics fluid structure interaction (FSI) were achieved by coupling the structural equation of motion with an in-house fluid solver through defined function (UDF) utility in Fluent. Numerical simulations were ran through at three different elastic axis (EA) positions, 0% (leading edge), 18.6% and 35% from the leading edge. The simulations were ran through at free stream velocity range from 4m/s to 14m/s. The results showed two different oscillation amplitudes from the dynamic responses generated by the aeroelastic system of the airfoil, at EA of 0% (leading edge) and 18.6% produced small amplitude oscillation (SAO) while at 35% elastic axis produced large amplitude oscillations (LAO). The validation of numerical simulation showed trends which are similar to experiment results and are found to produce a reasonably comparable limit cycle oscillation (LCO) amplitudes. From the aerodynamic flow aspect, laminar boundary layer separation was found to play an important role for the oscillation sustaining the pitching oscillation in small amplitude oscillation. Leading edge vortex, flow separation and reattachment flow phenomena was found which caused large amplitude oscillation and reversed flow vortices at the trailing edge of the airfoil caused the wing to pitch down and maintaining the oscillation cycle.
Contributor(s):
Muhamad Khairil Hafizi Mohd Zorkipli - Author
Primary Item Type:
Thesis
Identifiers:
Accession Number : 875008053
Language:
English
Subject Keywords:
aeroelastic; aerodynamics; nonlinearity
First presented to the public:
7/1/2018
Original Publication Date:
5/19/2019
Previously Published By:
Universiti Sains Malaysia
Place Of Publication:
School of Aerospace Engineering
Citation:
Extents:
Number of Pages - 161
License Grantor / Date Granted:
  / ( View License )
Date Deposited
2019-06-12 17:03:49.341
Submitter:
Mohd Jasnizam Mohd Salleh

All Versions

Thumbnail Name Version Created Date
Fsi simulation of an aeroelastic system with aerodynamic nonlinearity1 2019-06-12 17:03:49.341