Karbon teraktif (KT) komersial yang didapati sekarang masih dianggap mahal disebabkan oleh penggunaan bahan mentah yang tidak boleh diperbaharui seperti arang batu bitumen. Oleh itu, penyelidikan ini menyiasat potensi penggunaan sisa pertanian seperti kelongsong biji getah (KBG) dan tongkol jagung (TJ) yang terdapat di Malaysia sebagai pelopor untuk penyediaan karbon teraktif dimana ianya boleh diguna bagi menyingkirkan dua jenis logam berat iaitu Cu (II) dan Zn (II) daripada larutan akuas. Pengaktifan fiziko-kimia yang merangkumi penjerapan isi dengan kalium hidroksida (KOH) diikuti oleh gasifikasi karbon dioksida (CO2) telah digunakan untuk penghasilan karbon teraktif. Keputusan rekabentuk eksperimen mendedahkan bahawa suhu pengaktifan karbon dioksida, masa pengaktifan CO2 dan nisbah jerap isi (NJI) adalah faktor-faktor penting yang mempengaruhi hasil karbon teraktif dan prestasi penjerapan untuk logam Cu (II) dan Zn (II). Keadaan optima yang diperolehi untuk menyediakan KBGKT-CU adalah pada suhu 793 °C, tempoh pengaktifan 1 jam dan NJI 2.46. Bagi KBGKT-ZN, kondisi optima penyediaan adalah pada suhu 797 °C, tempoh pengaktifan 1 jam dan NJI 2.61. Bagi TJKT-CU, kondisi optima penyediaan adalah pada suhu 762 °C, tempoh pengaktifan 2.7 jam dan NJI 3.25. Untuk TJKT-ZN, kondisi optima penyediaan adalah pada suhu 768 °C, tempoh pengaktifan 3 jam dan NJI 3.5. Semua karbon teraktif yang telah terhasil luas permukaan (>500 m2/g) yang tinggi dan isipadu liang (>0.41 m3/g). KBGKT dan TJKT masing-masing menunjukkan jenis struktur liang yang homogen dan heterogen. Kesan-kesan kepekatan awal bahan jerap (10-100 mg/L), masa sentuh, suhu larutan (30-60 °C), pH larutan (2-6), garis sesuhu dan kinetik dan bagi sistem-sistem penjerapan tersebut dinilai melalui kajian penjerapan kelompok. Penjerapan logam Cu (II) dan Zn (II) meningkat dengan peningkatan kepekatan awal dan masa sentuh. Penjerapan logam Cu (II) dan Zn (II) pada kesemua KT adalah terbaik dipadankan oleh model garis sesuhu Freundlich. Penjerapan logam Cu (II) dan Zn (II) bagi semua karbon teraktif dipadankan dengan baik oleh model Freundlich dan model kinetik pseudo tertib kedua. Kajian lapisan tetap menunjukkan bahawa tempoh kelesuan untuk Zn (II) adalah lebih besar daripada Cu (II) dan peningkatan dalam ketinggian lapisan menghasilkan tempoh keletihan yang lebih tinggi.
_______________________________________________________________________
Commercially available activated carbon (AC) is still considered expensive due to the use of non-renewable and relatively expensive starting material such as bituminous coal. Therefore, this study investigates the potential use of agricultural waste such as rubber seed coat (RSC) and corncob (CC) that available in Malaysia, as the precursor for the preparation of AC which can be applied for the removal of two types of heavy metal, which are Cu (II) and Zn (II) from aqueous solution. Physiochemical activation consisting of potassium hydroxide (KOH) impregnation plus carbon dioxide (CO2) gasification was used to prepare the ACs. The optimum preparation conditions of RSCAC-CU were found at activation temperature of 793 °C, activation time of 1h and KOH impregnation ratio (IR) of 2.46. As for RSCAC-ZN, the optimum preparation conditions were at activation temperature of 797 °C, activation time of 1h and IR of 2.61. Meanwhile, the optimum preparation conditions of CCAC-CU were found at activation temperature of 762 °C, activation time of 2.7h and IR of 3.25. For CCAC-ZN, the optimum preparation conditions were at activation temperature of 768 °C, activation time of 3h and IR of 3.5. All the activated carbons prepared were high BET surface area (>500 m2/g) and pore volume (>0.41 m3/g). RSCAC and CCAC demonstrated homogeneous and heterogeneous type pore structures, respectively. The effects of adsorbate initial concentration (10-100 mg/L), contact time, solution temperature (30-60 °C), solution pH (2-6), isotherms and kinetics of the adsorption systems were evaluated through batch adsorption test. The Cu (II) and Zn (II) adsorption uptakes increased with increasing initial concentration and optimum contact time. Adsorptions of Cu (II) and Zn (II) on all ACs were best fitted by the Freundlich isotherm model. Adsorption kinetics of Cu (II) and Zn (II) followed pseudo-second-order on all the ACs. Fixed bed study showed that the exhaustion period for Zn (II) was greater than Cu (II) and the increase in bed heights resulted in higher exhaustion period.