Tesis ini membentangkan kajian berangka mengenai fenomena aeroelastik berkaitan dengan aerodinamik tidak linear dalam rejim nombor Reynolds transisi. Simulasi dua dimensi berdasarkan konsep interaksi struktur-bendalir pada nombor Reynolds rendah hingga sederhana (5.3×104≤Re≤1.3×105) dilakukan pada kerajang udara NACA 0012 dengan satu darjah kebebasan dalam anggul menggunakan ANSYS Fluent. Model gelora RANS, model SST 𝑘−𝜔 dengan pembetulan nombor Reynolds rendah dipilih untuk memodelkan aliran gelora di sekitar kerajang udara. Untuk mengira tindak balas struktur dinamik, kaedah integrasi masa Newmark-beta yang diubahsuai digunakan untuk menyelesaikan persamaan gerakan aeroelastik dan persamaan menakluk disusun sebagai fungsi tertakrif pengguna (UDF) dalam ANSYS Fluent. Simulasi dijalankan pada kelajuan udara antara 5 m/s hingga 12 m/s. Tiga kes dengan kedudukan paksi elastik yang berbeza dipertimbangkan, kedudukan paksi elastik terletak pada jarak 10%, 15%, dan 25% perentas dari pinggir hadapan kerajang udara. Ayunan kitaran had (LCO) dengan amplitud kecil diperhatikan dalam ketiga-tiga kes dan trend yang serupa dihasilkan dari segi amplitud dan frekuensi LCO yang berubah dengan kelajuan udara. Frekuensi LCO didapati meningkat dengan kelajuan udara, sementara amplitud LCO meningkat dengan kelajuan udara hingga nilai kelajuan udara tertentu, sebelum ia menurun kembali dengan peningkatan kelajuan udara. Kedudukan paksi elastik yang diuji dalam kajian ini tidak banyak mempengaruhi amplitud LCO, tetapi frekuensi LCO meningkat apabila paksi elastik diubah ke bahagian hadapan kerajang udara. Peningkatan frekuensi LCO dianggap sebagai kesan pengerasan dalam sistem kerana kekukuhan aerodinamik yang tidak linear. Titik pemisahan aliran pada permukaan kerajang udara didapati bergantung kepada sudut anggul seketika kerajang udara. Titik pemisahan bergerak menjauhi dari pinggir belakang ketika sudut anggul kerajang udara meningkat. Kejadian fenomena aeroelastik ayunan litar terhad pada nombor Reynolds transisi dalam kajian ini terutamanya disebabkan oleh aerodinamik tidak linear dari pemisahan lapisan sempadan lamina di pinggir belakang kerajang udara.
_______________________________________________________________________________________________________
This thesis presents a numerical study on an aeroelastic phenomenon due to aerodynamic nonlinearity in the transitional Reynolds number regime. Two-dimensional simulations based on the concept of fluid-structure interaction at low-to-moderate Reynolds numbers (5.3×104≤Re≤1.3×105) are carried out on a NACA 0012 airfoil with single degree of freedom in pitch using ANSYS Fluent. The RANS turbulence model, SST 𝑘−𝜔 model with low-Reynolds-number correction is selected to model the turbulent flow around the airfoil. To compute the structural dynamic response of the airfoil, modified Newmark-beta time integration method is employed to solve the aeroelastic equation of motion and the governing equations are compiled as a user-defined function (UDF) in ANSYS Fluent. The simulations are run at airspeeds ranging from 5 m/s to 12 m/s. Three cases with different elastic axis positions are considered, which are located at a distance of 10%, 15%, and 25% chord from the leading edge of the airfoil. Small amplitude limit cycle oscillations (LCO) are observed in all three cases and similar trend is produced in terms of the LCO amplitude and frequency varying with airspeed. The frequency of LCO is found to be increased gradually with airspeed, while the amplitude of LCO increases with airspeed up to certain value of airspeed, then it starts to decrease with increasing airspeed. The elastic axis positions tested in this study do not seem to have much effect on the amplitude of LCO, but the frequency of LCO increases as the elastic axis is shifted towards the leading edge of the airfoil. The increment of LCO frequency is contemplated as a hardening effect in the system due to nonlinear aerodynamic stiffness. The point of separation of flow on the surface of the airfoil is found to be affected by the instantaneous pitch angle of the airfoil. The separation point tends to move away from the trailing edge as the pitch angle of the airfoil increases. The occurrence of the aeroelastic phenomenon of LCO at transitional Reynolds number in this current study is mainly due to the aerodynamic nonlinearity from the laminar boundary layer separation at the trailing edge of the airfoil.