(For USM Staff/Student Only)

EngLib USM > Ω School of Chemical Engineering >

Dynamic modelling of bioelectrochemical activity for anode microbial fuel cells by geobacter sulfurreducens / Noor Fazliani Shoparwe

Dynamic modelling of bioelectrochemical activity for anode microbial fuel cells by geobacter sulfurreducens_Noor Fazliani Shoparwe_K4_2016_MYMY
Sel bahan api mikrob merupakan teknologi baru yang berpotensi besar untuk menjana elektrik daripada substrat organik dengan menggunakan mikrob dan tindabalas bioeletrokimia. Projek penyelidikan ini telah dilaksanakan untuk meningkatkan lagi prestasi aktiviti bioeletrokimia bagi anod sel bahan api mikrob untuk penghasilan elektrik daripada Geobacter sulfurreducens sebagai biopemangkin. Dalam merealisasikan kajian ini, permodelan dinamik memfokuskan bahagian anod secara sistem berkelompok telah dibangunkan. Mekanisme bagi pemindahan elektron secara terus daripada sel ektrasellular kepada elektrod telah diberi penekanan. Penambahbaikan ke atas model telah dilakukan dengan mengambil kira kinetik bagi tindabalas biokimia dan elektrod serta menggabungkan kehilangan voltan bagi sistem tersebut. Penambahbaikan juga dilakukan dengan mengambil kira kadar penurunan bagi aktiviti enzim dalam tindakbalas biokimia. Model matematik yang dibangunkan membolehkan kajian dilakukan terhadap profil arus elektrik, penghasilan biojisim, penggunaan substrat dan penurunan voltan terhadap fungsi masa. Kerja-kerja eksperimen pada keadaan operasi yang berbeza telah dijalankan untuk mendapatkan parameter penting dan mengesahkan model matematik. Kaedah elektrokimia telah diaplikasikan untuk mengkaji aktiviti elektrokima bagi sistem tersebut. Lengkuk pengutuban telah digunakan untuk mendapatkan setiap jenis penurunan voltan seperti kehilangan pengaktifan, kehilangan Ohmic and kehilangan kepekatan. Kaedah impedans spektroskopi eletrokimia (EIS) telah diaplikasikan untuk mendapatkan rintangan dalam dan rintangan pengutuban parameter. Selain itu juga, kaedah voltammetri berkitar telah digunakan untuk menjalankan kajian kinetik elektrod bagi sistem tersebut pada pengimbasan dan pemberian nilai voltan yang berbeza. Keputusan yang paling optimum diperolehi daripada eksperimen menggunakan reka bentuk kebuk tunggal, grafit lakan sebagai elektrod dan kepekatan asetat permulaan sebanyak 20 mM, iaitu menghasilkan penjanaan arus elektrik optimum iaitu 2.32 mA, rintangan dalam iaitu 85.24 Ω, kadar pertumbuhan spesifik iaitu 0.068 jam-1, hasil biojisim sel iaitu 0.0098 gsel/gasetat dan kadar pemindahan elektron heterogen untuk anod iaitu 0.0018 cm.s-1 telah digunakan untuk mengesahkan model yang dibangunkan. Model dinamik ini telah berjaya disahkan dengan data eksperimen yang memberikan min kuasa dua ralat kurang daripada 10%. Keseluruhan kerja dalam projek penyelidikan ini telah berjaya dilaksanakan dan membantu menangani sebahagian daripada cabaran dalam pembangunan teknologi sel bahan api mikrob. Gabungan proses bioelektrokimia dengan model matematik bukan sahaja telah memberi potensi yang besar untuk meningkatkan prestasi sel bahan api mikrob malah telah membantu kita memahami keseluruhan sistem sel bahan api mikrob. _______________________________________________________________________ Microbial fuel cells are an emerging technology which shows great potential for the generation of electricity from organic substrate via microbial and electrochemical reactions. This research project was carried out to improve bioelectrochemical activity of anode microbial fuel cells for electric current generation by using Geobacter sulfurreducens as a biocatalyst. In performing these studies, the dynamic modelling focusing for an anode side in a batch system was developed. The mechanism of direct electron transfer from the extracellular cells to an electrode was considered. The improvement of the model was made by taking into account the kinetic of biochemical and electrode reaction, and combined with the voltage losses of the system. The improvement was also made on biochemical reaction by considering the deactivation rate of enzyme reaction. The mathematical model allows studying the electric current profile, biomass production, substrate consumption and voltage losses as function of time. The experimental works at different operating conditions were performed to determine the important parameters and validated the mathematical model. Electrochemical methods were applied to perform the electrochemical activity of the system. Polarization curve was used to examine the individual voltage losses such as activation loss, Ohmic loss and concentration loss. Electrochemical impedance spectroscopy (EIS) was applied to determine the internal resistance and polarization resistance parameters. In addition, cyclic voltammetry (CV) method was used to perform the electrode kinetic studies of the system at different scanning rate and applied voltage. The optimum result obtained from the experimental studies using single chamber design, graphite felt as an electrode and 20 mM of initial acetate concentration which gave the optimum electric current production of 2.32 mA, the internal resistance of 85.24 Ω, the specific growth rate of 0.068 h-1, the maximum yield of cell biomass for Geobacter sulfurreducens of 0.0196 gcell.gacetate-1, and the heterogeneous electron transfer rate for anode of 0.0018 cm.s-1 was used to validate the model. The dynamic model was successfully validated with the experimental data which gave mean square error less than 10%. The overall work in this research project has successfully addressed and help to overcome several challenges in the development of microbial fuel cell technology. The combination of bioelectrochemical process with mathematical model has not only open a great potential for enhancing the microbial fuel cells performance but help us to fully understanding the overall system of microbial fuel cells.
Contributor(s):
Noor Fazliani Shoparwe - Author
Primary Item Type:
Thesis
Identifiers:
Accession Number : 875008860
Language:
English
Subject Keywords:
bioelectrochemical; Geobacter; experimental
Sponsor - Description:
Pusat Pengajian Kejuruteraan Kimia -
First presented to the public:
5/1/2016
Original Publication Date:
8/24/2020
Previously Published By:
Universiti Sains Malaysia
Place Of Publication:
School of Chemical Engineering
Citation:
Extents:
Number of Pages - 251
License Grantor / Date Granted:
  / ( View License )
Date Deposited
2020-08-24 13:10:01.944
Submitter:
Mohamed Yunus Yusof

All Versions

Thumbnail Name Version Created Date
Dynamic modelling of bioelectrochemical activity for anode microbial fuel cells by geobacter sulfurreducens / Noor Fazliani Shoparwe1 2020-08-24 13:10:01.944