Enjin kereta penumpang moden telah "dikecilkan saiz" untuk penjimatan bahan api, maka memerlukan putaran enjin yang tinggi untuk mendapatkan prestasi yang baik. Pengguna lebih gemar memperoleh tork pada putaran enjin rendah untuk pemanduan yang lebih baik. Enjin yang dikaji mempunyai 4 injap pada setiap silinder, 1.6 liter kapasiti, 2 profil sesondol masukan dan 2 ruang masukan yang berlainan panjang. Ia telah dimodel dan disahkan dengan prestasi enjin (kuasa, tork, dan lain-lain); dan tekanan dari kebuk pembakaran, ruang masukan dan ruang ekzos untuk menentukan tahap keyakinan ramalan model tersebut. Model ini kemudiannya dioptimumkan torknya pada putaran enjin rendah dengan memanipulasi konfigurasi dan panjang ruang ekzos; diameter dan panjang ruang masukan. Didapati bahawa sistem ekzos asal adalah terlalu pendek dan memberikan pengecasan ekzos yang tidak sekata di antara silinder. Keputusan simulasi menunjukkan bahawa peningkatan 2.7-5.6% dalam tork boleh direalisasikan dengan ruang ekzos yang panjang dan sistem ekzos yang mampu memberi pengecasan yang sekata di kalangan silinder. Peningkatan 2% tork boleh didapati dengan mengubah geometri ruang masukan kepada diameter yang lebih kecil. Enjin sasaran kemudiannya diubahsuai dengan ruang ekzos dan masukan. Keputusan menunjukkan peningkatan tork sebanyak 2.7- 4.5% pada kelajuan enjin yang lebih rendah dengan penalaan ruang ekzos. Kesan penalaan ruang masukan tidak ketara tetapi ia menunjukkan arah kecenderungan yang serupa seperti yang ditunjukkan oleh simulasi..
Modern passenger car engines have been “down-sized” for improved fuel consumption, resulting in high speeds to obtain good performance. Consumers, however, are demanding improved low-end torque for improved drivability. The target engine; a 4 valve per cylinder, 1.6L engine with two intake cam profiles and 2 intake runner lengths, was modeled and correlated with measured engine performance characteristics (power, torque, etc.); and pressure traces fromcombustion chamber, intake and exhaust manifolds to establish the confidence level in the model's prediction. The model was then optimised for low-end torque by manipulating exhaust manifold configuration, exhaust runner length, intake diameter
and intake runner length. It was found that the original exhaust system is too short and gives uneven exhaust cross-charging among the cylinders. Simulation result indicated that a 2.7-5.6% improvement in torque could be realised with an evenly cross-charged and longer exhaust runner. A 2% torque improvement was predicted by changing the intake manifold geometry to smaller diameter. The target engine was subsequently modified with new set of exhaust manifold and intake runner. Result showed a torque improvement of 2.7-4.5% at lower engine speed over the base design by exhaust tuning. Effect of intake tuning was not significant but it showed a similar trend as indicated by simulation.