Pemprosesan imej perubatan telah menjadi satu teknik penting yang boleh menggambarkan bahagian dalaman badan manusia untuk diagnosis yang lebih baik dan pengekstrakan struktur anatomi. Pemprosesan imej mempunyai kelebihan yang diterbitkan semula data asal secara berulang-ulang tanpa apa-apa perubahan yang membantu pakar radiologi untuk analisis. Magnetic Resonance Imaging (MRI) adalah salah satu modaliti pengimejan perubatan yang bergantung kepada teknologi komputer untuk mencipta imejterperinci otak. Output imej dengan MRI perlu menjalani beberapa teknik pengimejan
untuk mendapatkan maklumat yang penting dengan tepat. Dalam kertas kerja ini, semua imej input MRI otak berada di dalam format DICOM. Imej-imej yang menjalani tiga langkah asas teknik pengesanan kelebihan. Pengendali pengesanan pinggir digunakan untuk mengesan tumor otak adalah Robert sifar-persimpangan, pengendali Sobel, pengendali Prewitt, operator Canny dan algoritma Canny diubah suai. Keputusan visual dari setiap pengendali dianalisis menggunakan ukuran kuantitatif dan kualitatif. Parameter kuantitatif yang digunakan untuk menilai pengendali persembahan adalah PSNR, MSE dan SSIM. Berdasarkan analisis kuantitatif, Canny algoritma baru berjaya menghasilkan imej berkualiti tinggi dengan ralat kurang. Walau bagaimanapun, dari perspektif visual, pengendali Sobel dihasilkan peta kelebihan lebih baik daripada tumor otak berbanding algoritma Canny yang diubahsuai.
_______________________________________________________________________________________________________
Medical image processing has become an important technique that can visualize the interior of a human body for better diagnosis and extraction of an anatomical structure. Image processing has an advantage which reproduced original data repetitively without any changes that helps radiologist for analysis. Magnetic Resonance Imaging(MRI) is one of the medical imaging modalities that depend on computer technology to create detailed images of the brain. The output image by MRI need to undergo several imaging techniques to extract the important information accurately. In this work, all input MRI brain images are in DICOM format. The images undergo three fundamental steps of edge detection techniques. The edge detection operators used to detect the brain tumor are Robert zero-crossing, Sobel operator, Prewitt operator, Canny operator and modified Canny algorithm. The visual results from each operators are analyzed using quantitative and qualitative measurement. The quantitative parameters used to evaluate the operators performances are PSNR, MSE and SSIM. Based on the quantitative analysis, the new Canny algorithm successfully produced high quality image with less error. However, from
visual perspective, Sobel operator produced better edge maps of the brain tumor compared to the Modified Canny algorithm.