(For USM Staff/Student Only)

EngLib USM > Ω School of Electrical & Electronic Engineering >

Physical simulation of the III-V compound semiconductor InGaAs-AlAs resonant tunnelling diode

Physical simulation of the III-V compound semiconductor InGaAs-AlAs resonant tunnelling diode / Cheong Leong Jin
Pada tahun belakangan ini, penyelidikan dan penghasilan applikasi kekerapan tinggi telah menjejak kemajuan yang semakin meningkat. Kemajuan ini telahpun meningkatkan permintaan dan keperluan diod salunan terowong (RTD) yang mempunyai keupayaan untuk menanggung kekerapan yang berjumlah terahertz. Oleh itu, wujudlah keperluan untuk menyiasat ciri-ciri RTD dan memahami pembolehubah yang mampu memberi kesan kepada sifat-sifat RTD supaya model yang lebih cekap dapat dihasilkan. Tumpuan penyelidikan ini adalah untuk memahami mekanisme kuantum yang menjadi konsep sokongan untuk operasi RTD. Selain itu, hubungan antara parameter fizikal RTD dan ciri-ciri I-V telah disiasat untuk lebih memahami sifat-sifat RTD. Informasi hubungan ini seterusnya digunakan sebagai rujukan asas untuk optimasi lengkungan I-V. Penyelidikan tersebut telah dilaksanakan dengan menggunakan perisian simulasi Silvaco Inc. ATLAS© untuk menjalani proses simulasi bagi RTD model XMBE230. Simulasi-simulasi dijalankan dengan model tebalan lapisan epitaxial RTD yang berlainan untuk menyiasat kesan-kesan perubahannya terhadap ciri-ciri I-V. Kesimpulannya, keputusan simulasi adalah memuaskan dan berupaya untuk mewajarkan spekulasi awal yang dibuat terhadap RTD. Penyelidikan ini telah menunjukkan bahawa aliran arus yang melintasi RTD memang dipengaruh oleh tebalan lapisan epitaksi yang seterusnya akan membawa kesan yang sepadan kepada prestasi peranti tersebut. _______________________________________________________________________________________________________ For the past few years, the research and development on extreme high frequency applications has been steadily progressing towards further breakthrough, which leads to higher demand on the Resonant Tunnelling Diodes (RTD) that are capable of sustaining frequencies up to terahertz. There is then a need to investigate the characteristics of the RTD and to understand the exact variables that would affect the crucial properties that may in turn allow the production of a more efficient device model. The focus of this research is to understand the quantum mechanism that serves as the backbone concept towards the operation of RTD. The relationship between the physical parameters of the device and its I-V characteristics was investigated to further understand the properties of RTD. These relationships were then used as the basic stepping stones for the optimisation of a I-V curve. In order to do so, simulations were performed on the XMBE230 model RTD using the Silvaco Inc. ATLAS© simulation software. Simulations were done based on the modelling of the device to investigate the effect of variation in thickness parameters of the epitaxial layers of the RTD. In general, the results of the simulations were satisfactory as it managed to justify the inferences made to the RTD. It is found out that the current flow across the RTD is indeed affected by the epitaxial layers’ thickness, which would in turn affect the overall performance of the device itself.
Contributor(s):
Cheong Leong Jin - Author
Primary Item Type:
Final Year Project
Identifiers:
Accession Number : 875006078
Language:
English
Subject Keywords:
extreme; high frequency applications; Resonant Tunnelling Diodes (RTD)
First presented to the public:
6/1/2016
Original Publication Date:
5/16/2018
Previously Published By:
Universiti Sains Malaysia
Place Of Publication:
School of Electrical & Electronic Engineering
Citation:
Extents:
Number of Pages - 80
License Grantor / Date Granted:
  / ( View License )
Date Deposited
2018-06-20 13:02:19.28
Date Last Updated
2019-01-07 11:24:32.9118
Submitter:
Mohd Jasnizam Mohd Salleh

All Versions

Thumbnail Name Version Created Date
Physical simulation of the III-V compound semiconductor InGaAs-AlAs resonant tunnelling diode1 2018-06-20 13:02:19.28